Explanation:
The frequency is given to be f = 8 Hz.
Period is the inverse of frequency.
T = 1/f = 0.125 s
Velocity is wavelength times frequency.
v = λf = (0.40 m) (8 Hz) = 3.2 m/s
The wave travels 3.2 meters every second.
Answer:
N = 177843 sheets
Explanation:
We are given;
Mass;m = 0.0035 kg
Pressure; p = 101325 pa = 101325 N/m²
L = 0.279m
W = 0.216m
The weight of N sheets is N(mg)
Where;
m is the mass of one sheet
N is number of sheets
g is the acceleration due to gravity.
The pressure equals weight divided by the area on which the weight presses:
Thus,
p= F/A = Nmg/(L•W)
Therefore, making N the subject;
N = pLW/(mg)
N = 101325 x 0.279 x 0.216/ (0.0035 x 9.81)
N = 177843
Answer:
A-the energy of the wave decreases gradually
Explanation:
when a wave is acted upon by an external damping force the energy of the wave decreases gradually.
The energy degrades into the form of heat which is considered to be of less value and use. The reason is because it disperses and spreads more widely.
So therefore it end up as heat with a little sound but that is close to none because that too disperses into heat i.e. decreased form of energy.
From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470