The correct answer is option C. <span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
</span><span>
Keisha follows the instructions for a demonstration on gas laws.
1. Place a small marshmallow in a large plastic syringe.
2. Cap the syringe tightly.
3. Pull the plunger back to double the volume of gas in the syringe.
Now, this activity is being done at the same temperature, because there is no mention of the temperature change. Thus, when the plunger is pulled back, the volume doubles, so pressure will decrease. Therefore, </span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
Friend #1 gets at least 2/5 of a pizza.
Friend #2 gets at least 2/5 .
Friend #3 gets at least 2/5 .
Friend #4 gets at least 2/5 .
Friend #5 gets at least 2/5 .
Friend #6 gets at least 2/5 .
Sum . . . . . . . . . at least 12/5 of a pizza.
Simplify . . . . . . at least 2.4 pizzas.
-- If pizzas can be bought by the half, they should order at least <em>2-1/2 pizzas.</em>
-- If only whole pizzas have to be ordered, then they should order at least <em>3 pizzas.</em>
The final velocity of the red barge in the collision elastic is 0.311 m/s when it collides with blue barge pf mass 1000000 kg.
Final velocity(v3) of the red barge is calculated by following formula
m1×v1+ m2×v2= (m1+m2)v3
Substituting the value of m1= 150000 kg, v1= 0.25 m/s, m2= 1000000 kg, v2= 0.32 m/s
150000 × 0.25+ 1000000×0.32= (150000+1000000)×v3
37500+ 320000= 1150000×v3
357500= 1150000×v3
v3= 0.311 m/s
<h3>What is elastic collision velocity? </h3>
- The velocity of the target particle after a head-on elastic impact in which the projectile is significantly more massive than the target will be roughly double that of the projectile, but the projectile velocity will remain virtually unaltered.
For more information on elastic collision velocity kindly visit to
brainly.com/question/29051562
#SPJ9
The minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s. The correct option is D.
<h3>What is mechanical energy?</h3>
The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.
M.E = KE +PE
A boy is trying to roll a bowling ball up a hill. The friction is ignored. The ball must have to reach the top of the hill with a velocity. The acceleration due to gravity, g = 9.8 m/s²
The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.
M.E bottom of hill = M.E on top of hill
Kinetic energy + Potential energy = Kinetic energy + Potential energy
1/2 mu² + 0 = 0 + mgh
At the top of hill, the velocity will become zero. So, final kinetic energy is zero.
Substituting the values, we have
1/2 x u² = 9.8 x 22.5
u = sqrt [2 x9.8 x 22.5 ]
u= 21 m/s
Thus, the minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s.
Learn more about mechanical energy.
brainly.com/question/13552918
#SPJ1