Answer:
The velocity of the freight car decreases.
Explanation:
This question is answered by the conservation of momentum principle.
When the freight car is moving at a certain speed, it has a constant momentum.
We will call this M1.
The equation for M1 will be:
M1 = Mass * Speed
Now when the coal is dumped into the freight car, the Mass increases.
Since conservation of momentum states that the momentum will remain the same. We have:
M1 = (Mass of freight + Mass of coal) * Speed
Since M1 is constant, if the mass increases, the speed had to decrease to keep the equation true.
The meter out circuit is the flow control circuit design that can most effectively control an overrunning load.
The meter-out circuit can be very accurate, but are not efficient. The meter-out circuit can control overrunning as well as opposing loads while the other one method must be used with opposing loads only. The choice of flown control valve method and the location of the flow control in the circuit are dependent on the type of application being controlled.
<h3>What is a Circuit ?</h3>
In electronics, a circuit is a complete circular conduit through which electricity flows. A simple circuit consists of conductors, a load, and a current source. The term "circuit" broadly refers to any continuous path via which electricity, data, or a signal might flow.
- The directional valve shifts, causing the actuator to move faster than pump flow can fill it due to an overrunning load. Oil is leaking from one side, whereas there is none on the other.
Hence, flow control circuit design that can best control an overrunning load is the opposing circuit
Learn more about Circuit here:
brainly.com/question/26064065
#SPJ4
No because they could be different materials for example one could be concrete and one could be aluminium
Answer:
242.85 Hz
Explanation:
For maximum intensity of sound, the path difference,ΔL = (n + 1/2)λ/2 where n = 0,1,2...
Since Abby is standing perpendicular to one speaker, the path length for the sound from the other speaker to him is L₁ = √(2.00² + 5.50²) = √(4.00 + 30.25) = √34.25 = 5.85 m.
The path difference to him is thus ΔL = 5.85 m - 5.50 m = 0.35 m.
Since ΔL = (n + 1/2)λ/2 and for lowest frequency n = 0,
ΔL = (n + 1/2)λ/2 = (0 + 1/2)λ/2 = λ/4
ΔL = λ = v/f and f = v/4ΔL where f = frequency of wave and v = velocity of sound wave = 340 m/s.
f = 340/(4 × 0.35) = 242.85 Hz
It Is False. Liquid will not expand to fill it's container, while gas will.