Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.
Answer:
Explanation:
v= u + at
v is final velocity , u is initial velocity . a is acceleration and t is time
Initial velocity u = 0 . Putting the given values in the equation
v = 0 + g sin 18 x 3.5
= 10.6 m /s
Explanation:
It is given that,
Diameter of loop, d = 1.4 cm
Radius of loop, r = 0.7 cm = 0.007 m
Magnetic field, 
(A) Magnetic field of a current loop is given by :

I is the current in the loop


I = 27.85 A
(B) Magnetic field at a distance r from a wire is given by :



r = 0.00222 m

Hence, this is the required solution.
Answer:four times
Explanation:
Given
mass of both cars A and B are same suppose m
but velocity of car B is same as of car A
Suppose velocity of car A is u
Velocity of car B is 2 u
A constant force is applied on both the cars such that they come to rest by travelling certain distance
using to find the distance traveled
where, v=final velocity
u=initial velocity
a=acceleration(offered by force)
s=displacement
final velocity is zero
For car A


For car B


divide 1 and 2 we get

thus 
distance traveled by car B is four time of car A