Please mark brainliest you answer is B).
Have a good night!
To solve the exercise it is necessary to keep in mind the concepts about the ideal gas equation and the volume in the cube.
However, for this case the Boyle equation will not be used, but the one that corresponds to the Boltzmann equation for ideal gas, in this way it is understood that

Where,
N = Number of molecules
k = Boltzmann constant
V = Volume
T = Temperature
P = Pressure
Our values are given as,




Rearrange the equation to find V we have,



We know that length of a cube is given by

Therefore the Length would be given as,



Therefore each length of the cube is 3.44nm
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058
Answer:
comparing the anatomy of organisms
Explanation:
Basically, Rocks are the solid evidence used to date the earth.
Due to the changing in the genetic make up of organisms,the anatomy of organisms is not a reliable evidence to date the earth.
Answer:
The cannonball and the ball will both take the same amount of time before they hit the ground.
Explanation:
For a ball fired horizontally from a given height, there is only a vertical acceleration on it towards the ground. This acceleration is equal to the acceleration due to gravity (g = 9.81 m/s^2). A ball dropped from a height will also only experience the same vertical acceleration downwards which is also equal to g = 9.81 m/s^2.
Therefore both the cannonball and the ball will take the same amount of time to hit the ground if they are released/fired from the same height.