Answer:
True is the answer but i don't know why
Answer:
because in speech noone can tell anything while talking
Answer:
The oxygen dissociation curve represents the percentage saturation of Hb with oxygen at different partial pressure of oxygen. The different partial pressures gives sigmoid shapes to the curve. When this curves shifts to right, it indicates low affinity or binding of oxygen by the Hb. it also indicates the unloading or releases of Oxygen by Hb molecules at condition of low pressure. e,g in the muscles during strenuous exercise.However, when the curve shifts to the left, this indicate high affinity for oxygen, great binding, at high partial pressure of oxygen.e,g in the lungs to take oxygen and releases CO2.
Therefore in this scenario, the statement -. <u>During strenuous exercise, the oxygen-hemoglobin dissociation curve shifts to the right.</u> is correct. because oxygen is needed by the muscles therefore ,oxygen should be less binded by Hb, decrease affinity and easily unloaded to muscles.
<u>The statement </u>This rightward shift reflects an increase in the affinity of hemoglobin for oxygen and favors loading of O2 into hemoglobin in the lungs is wrong.
As explained above the rightwards shift indicated low affinity of Hb for oxygen(unloading)and favours unloading at the muscles because during strenuous exercise the partial pressure of oxygen is very low(but that of CO2 high) in the muscles which favours low oxygen molecules binding by Hb, and easy release to respiring cells.
Explanation:
Answer: a) substrate and cofactors b) covalent modification
Explanation:
Metabolic pathways involve all the chemical processes takes place in the enviornment or in an organisms.The metabolic pathways are controlled through the catalytic activities of enzymes.
The availability of enzyme is regulated by substrate and cofactors present in enzyme and enzyme activity is commonly regulated via covalent modification.
Enzymes are highly selective in nature and bind to a specific substarte only. The active site in enzyme binds with the substrate to form enzyme substrate complex. Coactors assist the enzyme activity, without cofactor enzyme can not perform its activity.
Hence enzyme availibility is regulated by substrate and cofactors regulates.
Covalent modifications regulates activity of enzyme as it involves addition and removal of chemical group to synthesis required protein. It can change the chemical properties of the site by targeting one or multiple amino acid.
Thus the correct answer is a) substrate and cofactors b) covalent modification
Eukaryotic transcripts (mRNA) have to undergo capping and splicing before it can be translated.
<h3>RNA processing:</h3>
1. An RNA transcript is first produced in a eukaryotic cell as a pre-mRNA, which needs to be converted into a messenger RNA (mRNA).
2. The RNA transcript is given a 5' cap at the start and a 3' poly-A tail at the end.
3. The process of splicing involves cutting out some RNA transcript segments (introns), then joining the remaining segments (exons) back together.
4. Some genes have the ability to alternate splices, which produces various mature mRNA molecules from the same beginning transcript.
The introns not only do not contain the information necessary to construct a protein, but they also need to be cut off in order for the mRNA to create a protein with the correct sequence. An mRNA with extra "junk" in it will be created if the spliceosome fails to remove an intron, and the translation process will result in the production of the incorrect protein.
Learn more about RNA transcript here:
brainly.com/question/13834206
#SPJ4