Answer:
his results in the final angle after the collision of 37.2 degrees basically what we did there is turn the vector into a right triangle. We use sohcahtoa to solve for the angle. Being.
Explanation:
<h2>Hey There!</h2><h2>_____________________________________</h2><h2>Question 7:
</h2>

The graph of
• The I-V for Ohmic Metal wire conductor at constant temperature always shows a straight line between the Current(I) plotted at Y axis and Voltage(V) plotted at X axis. Picture 1
• The I-V graph for Diode shows that first the current is zero but as we increase the potential difference(voltage), it results in the increase in the current. Picture 2
<h2>_____________________________________
</h2><h2>Question 8:
</h2>
A diode is a device that allows current to flow in only one direction.
Forward Bias, When a diode is forward bias (a voltage in the "forward" direction) then the P-side of the diode is attached to the positive terminal and N-side is fixed to the negative side of the battery which is connected, current flows freely through the device. The forward bias decreases the thickness of potential barrier(The potential barrier barrier in which the charge requires additional force for crossing the region)
Reverse Bias, When a diode is Reverse bias(a voltage in the "backward direction) then the P-side of the diode is connected to the negative terminal and N-side is connected to the positive terminal of the battery which is connected. The reverse bias increases the thickness of the potential barrier resulting in the flow of no current.

The Forward bias decreases the resistance of the diode whereas the reversed bias increases the resistance of the diode. As in forward biasing the current is easily flowing through the circuit whereas reverse bias does not allow the current to flow through it.
<h2>_____________________________________
</h2><h2>Best Regards,
</h2><h2>'Borz'
</h2>
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
v = 29.4 m / s
Explanation:
For this exercise we can use the conservation of mechanical energy
Lowest starting point.
Em₀ = K = ½ m v²
final point. Higher
= U = m g h
Let's use trigonometry to lock her up
cos 60 = y / L
y = L cos 60
Height is the initial length minus the length at the maximum angle
h = L - L cos 60
h = L (1- cos 60)
energy is conserved
Em₀ = Em_{f}
½ m v² = mgL (1 - cos 60)
v = 2g L (1- cos 60)
let's calculate
v² = 2 9.8 3.0 (1- cos 60)
v = 29.4 m / s
The answer would be “B” because humans would need water, protection from radiation so we don’t melt or burn to death lol, and a gaseous atmosphere because we would need oxygen.