I think you forgot to give the choices along with your question. I am answering the question based on my research and knowledge. "Helium effuses 0.71 times faster than hydrogen" is the statement that <span>holds true when the molar mass of hydrogen is 2.0 grams and that of helium is 4.0 grams. I hope the answer has helped you.</span>
In nuclear fission heavier elements are split to make lighter elements whilst releasing energy. An atom, its nucleus to be more specific, is bombarded with neutrons. The nucleus becomes unstable and it starts to split/decay. It creates the fusion products. Neutrons and lighter elements are released; the neutrons from the nuclei of the atom(s) being split.
Explanation:
It is given that,
The electron in a hydrogen atom, originally in level n = 8, undergoes a transition to a lower level by emitting a photon of wavelength 3745 nm. It means that,


The amount of energy change during the transition is given by :
![\Delta E=R_H[\dfrac{1}{n_f^2}-\dfrac{1}{n_i^2}]](https://tex.z-dn.net/?f=%5CDelta%20E%3DR_H%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7Bn_i%5E2%7D%5D)
And
![\dfrac{hc}{\lambda}=R_H[\dfrac{1}{n_f^2}-\dfrac{1}{n_i^2}]](https://tex.z-dn.net/?f=%5Cdfrac%7Bhc%7D%7B%5Clambda%7D%3DR_H%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7Bn_i%5E2%7D%5D)
Plugging all the values we get :
![\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{3745\times 10^{-9}}=2.179\times 10^{-18}[\dfrac{1}{n_f^2}-\dfrac{1}{8^2}]\\\\\dfrac{5.31\times 10^{-20}}{2.179\times 10^{-18}}=[\dfrac{1}{n_f^2}-\dfrac{1}{8^2}]\\\\0.0243=[\dfrac{1}{n_f^2}-\dfrac{1}{64}]\\\\0.0243+\dfrac{1}{64}=\dfrac{1}{n_f^2}\\\\0.039925=\dfrac{1}{n_f^2}\\\\n_f^2=25\\\\n_f=5](https://tex.z-dn.net/?f=%5Cdfrac%7B6.63%5Ctimes%2010%5E%7B-34%7D%5Ctimes%203%5Ctimes%2010%5E8%7D%7B3745%5Ctimes%2010%5E%7B-9%7D%7D%3D2.179%5Ctimes%2010%5E%7B-18%7D%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7B8%5E2%7D%5D%5C%5C%5C%5C%5Cdfrac%7B5.31%5Ctimes%2010%5E%7B-20%7D%7D%7B2.179%5Ctimes%2010%5E%7B-18%7D%7D%3D%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7B8%5E2%7D%5D%5C%5C%5C%5C0.0243%3D%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7B64%7D%5D%5C%5C%5C%5C0.0243%2B%5Cdfrac%7B1%7D%7B64%7D%3D%5Cdfrac%7B1%7D%7Bn_f%5E2%7D%5C%5C%5C%5C0.039925%3D%5Cdfrac%7B1%7D%7Bn_f%5E2%7D%5C%5C%5C%5Cn_f%5E2%3D25%5C%5C%5C%5Cn_f%3D5)
So, the final level of the electron is 5.
Answer:
option A
I think so good night sweet dreams
Answer:
3.1atm
Explanation:
Given parameters:
Volume of gas = 2L
Number of moles = 0.25mol
Temperature = 25°C = 25 + 273 = 298K
Unknown:
Pressure of the gas = ?
Solution:
To solve this problem, we use the ideal gas equation.
This is given as;
PV = nRT
P is the pressure
V is the volume
n is the number of moles
R is the gas constant = 0.082atmdm³mol⁻¹K⁻¹
T is the temperature
P =
Now insert the parameters and solve;
P =
= 3.1atm