Answer:
Mg^2+ and OH- are the chemical species present at the equilibrium. Mg(OH)2 will not affect the equilibrium.
Explanation:
Step 1: data given
Reactants are Solid Mg(OH)2 and H2O(l)
Kc1 = 1.8 * 10^-11
Step 2: The balanced equation
Mg(OH)2(s) ⇄ Mg2+(aq) + 2OH-(aq)
Step 3: Define the equilibrium constant Kc
Kc = [OH-]²[Mg^2+]
Pure solids and liquids do not have any effect or influence on the equilibrium in the reaction. So they are not included in the equilibrium constant expression.
This means Mg^2+ and OH- are the chemical species present at the equilibrium. Mg(OH)2 will not affect the equilibrium.
Answer:
i not anther stand your bla bla bla
Answer: Option (c) is the correct answer.
Explanation:
Entropy is defined as the degree of randomness. This means that more is the number of collisions taking place between atoms of a substance more will be the randomness.
Therefore, more will be the entropy of substance. We cannot measure the entropy but we can measure the change in entropy of a substance.
A thermometer is a glass tube that contains a liquid column generally mercury, and it is usually used to measure the temperature of human body.
A calorimeter is a device or apparatus that is used in a chemical reaction to measure the amount of heat involved.
Therefore, we can conclude that the student can't measure entropy directly, only an entropy change.
Answer:
there it is fella tried on ma own consciousness
Answer:
Answer: The solubility of B is high than the solubility of A.
Explanation:
The solubility is defined as the amount of substance dissolved in a given amount of solvent. More the solute gets dissolved, high will be the solubility and less the solute dissolved, low will be the solubility.
Mass of undissolved substance of substance A is more than Substance B at every temperature. This implies that less amount of solute gets dissolved in the given amount of solvent.
Therefore, B has high solubility than substance A.