I believe the answer is compound B may have a lower molecular weight compared to compound A.
At the same temperature, lighter particles of a compound have a higher average speeds than do heavier particles of another compound. Thus, particles of compound B are lighter than those of compound A and thus they have a higher average speed, hence evaporating faster compared to compound A.
You’ll need to be sure to count all the atoms in each side of the chemical equation.
Answer:
Period
Explanation:
If we ubicate te period one on the alkaline metals, we can see the lithium, so we go to the borans on te group AIII an we see Boron, move to the rigth on the same sense tou the group AVI we see the Oxygen, we can know that also for the electronic configuration Li:1s²2s¹ B:1s²2s²3p
Answer:
0.24 M
Explanation:
Molarity = Moles solute / Liters solution
Step 1: Identify variables
400 mL = Liters solution
0.60 moles = Moles solute
Step 2: Identify conversions
1 L = 1000 mL
Step 3: Convert mL to L
400mL(1 L/1000mL) = 0.4 L
Step 4: Find molarity
M = (0.4 L)(0.60 mol) = 0.24 M
Answer:
The mass of C2H2 in the mixture is 0.56gram using the ratio of carbon in the products contributed by the C2H2.
Explanation:
The balanced equation for the reaction is: C3H8 + 2C2H2 + 10O2 >> 7CO2 + 6H2O.
From the reaction, we know that the oxygen was in excess, this will make the Carbon sources the limiting agents in the reaction. The details of the reaction showed that the ratio of water to the carbon dioxide is 1.6:1. This also means that the expected mole of carbon dioxide will be 7/1.6, which is 3.75moles.
The individual balanced equation of reaction is:
C3H3 +5O2 >> 3CO2 + 4H2O
and 2C2H2 + 5O2 >>4CO2 + 2H2O. From this one can quickly tell that the propane is in sufficient supply as it produces 3 moles of CO2 out of the expected 3.75 moles obtained above. Leaving 0.75moles of CO2 to the ethyne.
The mass of ethyne in the mixture will therefore be: 0.75/3.75 X 2.8 = 0.56g.