Radio active decay reactions follow first order rate kinetics.
a) The half life and decay constant for radio active decay reactions are related by the equation:



Where k is the decay constant
b) Finding out the decay constant for the decay of C-14 isotope:



c) Finding the age of the sample :
35 % of the radiocarbon is present currently.
The first order rate equation is,
![[A] = [A_{0}]e^{-kt}](https://tex.z-dn.net/?f=%20%5BA%5D%20%3D%20%5BA_%7B0%7D%5De%5E%7B-kt%7D%20%20%20)
![\frac{[A]}{[A_{0}]} = e^{-kt}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BA%5D%7D%7B%5BA_%7B0%7D%5D%7D%20%3D%20e%5E%7B-kt%7D%20%20)


t = 7923 years
Therefore, age of the sample is 7923 years.
Answer:
One that “Can be answered by conducting an experiment”
Explanation:
Answer: Option (b) is the correct answer.
Explanation:
A covalent compound is defined as the compound in which sharing of electrons take place between the combining atoms. Generally, when two or more non-metals chemically combine together the it will lead to the formation of a covalent compound.
For example,
and HCl is also a covalent compound.
And, a compound in which transfer of electrons occur between the combining atoms is known as an ionic compound. Whenever, a metal chemically combines with a non-metal then it will always lead to the formation of an ionic compound.
For example, KI is an ionic compound.
Thus, we can conclude that
and HCl are the two substances which are covalent compounds.
Answer:
Ag is the oxidizing agent
Explanation:
oxidizing agent in the following equation?
Al (s) + 3 Ag+ (aq) = Al+3 (aq) + 3 Ag (s)
Left side
Al = 1
Ag = 3
Right Side
Al = 1
Ag = 3
So it's balanced already good.
Define
oxidizing agent = An oxidizing agent is the substance that gains electrons and is reduced in a chemical reaction.
Al is the reducing agent.
Ag is the oxidizing agent
The first one is 32mL and the second one is 2.62 and I think it’s grams/mL I’m not for sure about the letters on the second one