The correct answer to the question is: A) miles/hour and B) metre/ second.
EXPLANATION:
Before answering this question, first we have to understand speed.
The speed of a body is defined as the rate of distance travelled or the distance travelled by a body per unit time.
Hence, it is a derived quantity which is obtained from distance and time.
The unit of distance can be metre, miles, and the unit of time can be second, minutes or hour.
As speed is the distance covered per unit time, the perfect units will be miles/hour and metre/second.
Hence, the correct options are first and second.
Great Question! I happened to be a physics nerd!
Answer:
C. Two hydrogen nuclei, each with only one proton, fuse to form deuterium, a form of hydrogen with one proton.
MAKE SURE TO SEE EXPLANATION!
Explanation:
In the core of the Sun, or any other main sequence star, there is no single fusion process. Instead, complex sequences of processes occur to make helium nuclei from hydrogen nuclei (i.e. protons). The proton-proton chain provides for the majority of energy generation in stars with masses less than that of the Sun. One difficulty in creating a helium nucleus (two protons and two neutrons) is that there are only protons to begin with. Some protons must be turned into neutrons in some way. The first step is to combine two protons to form a deuterium nucleus (also known as a deuteron). That's a hefty hydrogen nucleus with one proton and one neutron. Such a proton-proton contact is highly unlikely, and it has never been detected in a laboratory. Fortunately, the Sun's core is incredibly hot and dense, with an incredible number of protons packed inside. Even a low likelihood event will occur every now and again. Along with each deuteron, a positron (an "anti-electron") and a neutrino are created. Because the Sun's core is plasma, there are a lot of free electrons, thus the positron doesn't live long until it and an electron collide and annihilate, resulting in gamma radiation. The deuteron then interacts with a proton to form a helium 3 nucleus. That is a high-probability interaction, and it occurs swiftly. Two helium 3 nuclei join in the third phase to generate a helium 4 ("regular" helium) nucleus and a proton. Branch I of the proton-proton (p-p) chain is responsible for this. Another stage is required because reactions between helium 3 and helium 4 nuclei are possible. There are two conceivable reactions (named Branch II and Branch III), and I'll save you the gory details. It gets much more complicated since theoretical calculations indicate that a reaction between a helium 3 nucleus and a proton is feasible — Branch IV. This reaction has an incredibly low likelihood of occurring, far lower than the Branch I reaction, thus it must be exceedingly rare. The Carbon-Nitrogen-Oxygen (CNO) Cycle is another method for reducing hydrogen to helium. It does not generate much energy in the Sun, but it is the principal energy generation mechanism in larger stars.
Answer:
A- A demonstration shows how something works, often including models
Explanation:
A demonstration allows, through experimentation, to show how nature works and in that way can include the explanation of scientific theories that explain the set of observed facts, that is, it serves as a demonstration of the underlying scientific principles.
We have the equation for electric field E = kQ/
Where k is a constant, Q is the charge of source and d is the distance from center.
In this case E is inversely proportional to 
So, 
= 485 N/C
= 0.208 cm
= 0.620 cm
= ?

= 
= 53.20 N/C