Joules watts and calories
As the centripetal force<span> acts upon an </span>object moving <span>in a </span>circle<span> at constant speed, the </span>force<span> always acts inward as the velocity of the </span>object<span> is directed tangent to the </span>circle. ... In fact, whenever the unbalanced centripetal force<span> acts perpendicular to the direction of </span>motion<span>, the speed of the </span>object will<span> remain constant.</span>
Answer:
Friction between the box and the floor is 25N to the left.
Explanation:
According to Newton's second law of motion, the net force acting on an object is equal to the produce between the object's mass and its acceleration:

where
m is the mass of the object
a is its acceleration
In this problem, we have two forces acting on the object:
- The applied force, F = 25 N, to the right
- The force of friction
, opposing the motion of the box, so to the left
So we can write the net force as

Also, we know that the box is moving at constant speed: this means its acceleration is zero, so

Therefore

WHich means:

And therefore,

which means that the force of friction is also 25 N.
Answer:
The radius is 
Explanation:
From the question we are told that
The distance beneath the liquid is 
The refractive index of the liquid is 
Now the critical value is mathematically represented as
![\theta = sin ^{-1} [\frac{1}{n_i} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7Bn_i%7D%20%5D)
substituting values
![\theta = sin ^{-1} [\frac{1}{131} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B131%7D%20%5D)

Using SOHCAHTOA rule we have that

=> 
substituting values

