Answer:
Temperature required = 923K
Explanation:
The question is incomplete as there are some details that has to be given. details like the values of the standard enthalpies and entropies of the reactants and product as this is needed to calculate the actual value of the standard enthalpies and standard entropies of the reaction. I was able to get those values from literature and then calculated what needs to be calculated.
From there, I was able to use the equation that shows the relationship between, gibb's free energy, enthalpy, entropy and temperature. The necessary mathematical manipulation were done and the values were plugged in to get the temperature required to make the reaction spontaneous.
A few notes on the Gibb's free energy.
The Gibb's free energy also referred to as the gibb's function represented with letter G. it is the amount of useful work obtained from a system at constant temperature and pressure. The standard gibb's free energy on the other hand is a state function represented as Delta-G, as it depends on the initial and final states of the system.
The spontaneity of a reaction is explained by the standard gibb's free energy.
- If Delta-G = -ve ( the reaction is spontaneous)
- if Delta -G = +ve ( the reaction is non-spontaneous)
- if Delta-G = 0 ( the reaction is at equilibrium)
The step by step calculations is done as shown in the attachment.
Answer:
both sugar and phosphate molecules
Answer: Option (b) is the correct answer.
Explanation:
A covalent bond is defined as the bond which occurs due to sharing of electrons between the combining atoms.
Generally, a covalent bond is formed between non-metals.
For example, both nitrogen and oxygen atoms are non-metals and they combine covalently to form compound.
As nitrogen has 5 valence electrons and an oxygen atom has 6 valence electrons. So, there occurs unequal sharing of electrons between the two.
Thus, we can conclude that when a covalent bond forms then electrons in valence shells are shared between atoms.
Gamma radiation have the most penetrating power. It can penetrate through human body, aluminum and other metals. It can be stopped by lead. Hence, the radioactive waste are stored in lead container for safety purposes. The beta ray has more penetrating power than the alpha but less than gamma. The beta radiations can be stopped by aluminum. The alpha radiations have least penetrating power and it can be stopped by human hands.