<span>PbO
Let's look at each of the 4 compounds and see what's needed.
PbO.
* Oxygen has a valance shell that's missing 2 electrons and wants to get those 2 elections. Lead donates them, so you have a Lead (II) ions. This is a correct choice.
PbCl4
* Chlorine wants to grab 1 electron to fill it's valance shell and Lead donates that election. However, there's 4 chlorine atoms and every one of them wants and electron, and lead is donating all 4 of the desired electrons making the Lead (IV) ion. So this is a bad choice.
Pb2O
* Oxygen still wants 2 electrons and gets them from the lead. But there's 2 lead atoms and each of them donates 1 election making for 2 Lead(I) ions. So this too is a bad choice.
Pb2S
* Sulfur is in the same column of the periodic table as oxygen and if this compound were to exist would have similar properties as Pb2O and would have Lead(I) ions. So this is a bad choice.</span>
"(2) increase in suburbanization" was a direct result of the <span>baby boom that followed World War II, but of course there were other factors that resulted as well. </span>
A change of one unit on the pH scale represents a change in the concentration of hydrogen ions by a factor of 10, a change in two units represents a change in the concentration of hydrogen ions by a factor of 100. Thus, small changes in pH represent large changes in the concentrations of hydrogen ions.
The Molecule of Sodium Formate along with Formal Charges (in blue) and lone pair electrons (in red) is attached below.
Sodium Formate is an ionic compound made up of a positive part (Sodium Ion) and a polyatomic anion (Formate).
Nomenclature:
In ionic compounds the positive part is named first. As sodium ion is the positive part hence, it is named first followed by the negative part i.e. formate.
Name of Formate:
Formate ion has been derived from formic acid ( the simplest carboxylic acid). When carboxylic acids looses the acidic proton of -COOH, they are converted into Carboxylate ions.
E.g.
HCOOH (formic acid) → HCOO⁻ (formate) + H⁺
H₃CCOOH (acetic acid) → H₃CCOO⁻ (acetate) + H⁺
Formal Charges:
Formal charges are calculated using following formula,
F.C = [# of Valence e⁻] - [e⁻ in lone pairs + 1/2 # of bonding electrons]
For Oxygen:
F.C = [6] - [6 + 2/2]
F.C = [6] - [6 + 1]
F.C = 6 - 7
F.C = -1
For Sodium:
F.C = [1] - [0 + 0/2]
F.C = [1] - [0]
F.C = 1 - 0
F.C = +1
Answer:
Look at the periodic table of elements
Explanation:
Group 1 is the most reactive and to the right
Group 18 is least reactive and all the way to the left. The rest are in between. The groups go vertical.
You'd be able to solve with this information youre welcome