Answer: horizontal speed is 3.9 m/s
Explanation: when ball starts to drop, its vertical speed v0 is zero.
We can calculate dropping time from s = v0t +0.5gt².
Dropping time t= √(2s/g)= √((2·8.0 m)/9.81 m/s²)= 1.277 s
Because ball travels horizontal distance s= 5.0 m
HorizontalSpeed v = s/t = 5.0 m/1.277s= 3,915 m/s
The acceleration of the car is 1.067 m/
.
<u>Explanation:</u>
Acceleration is the measure of change in velocity experienced by any object for a given time period. So it is determined as the ratio of difference in the velocity to the time period.
As here the initial velocity is stated as zero, so u = 0. And the final velocity is termed as 50 km/h. Then we have to determine the acceleration in 13 s. So here we have to convert the units as common units. Thus, 50 km/h should be converted to m/s as 
So now, the initial velocity u = 0 and final velocity v = 13.88 m/s and the time period is given as t = 13 s.

So the acceleration of the car is 1.067 m/
.
Explanation:
thet amplify DC, because of the voltage ( small current input signal)
Objects with the same charge repels each other whereas objects with opposite charges attract each other.
Hope this helps!