Answer:

Explanation:
Since the <em>rate constant</em> has units of <em>s⁻¹</em>, you can tell that the order of the reaction is 1.
Hence, the rate law is:
![r=d[A]/dt=-k[A]](https://tex.z-dn.net/?f=r%3Dd%5BA%5D%2Fdt%3D-k%5BA%5D)
Solving that differential equation yields to the well known equation for the rates of a first order chemical reaction:
![[A]=[A]_0e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_0e%5E%7B-kt%7D)
You know [A]₀, k, and t, thus you can calculate [A].
![[A]=0.548M\times e^{-3.6\cdot 10^{-4}/s\times99.2s}](https://tex.z-dn.net/?f=%5BA%5D%3D0.548M%5Ctimes%20e%5E%7B-3.6%5Ccdot%2010%5E%7B-4%7D%2Fs%5Ctimes99.2s%7D)
![[A]=0.529M](https://tex.z-dn.net/?f=%5BA%5D%3D0.529M)
As water is boiled, kinetic energy causes<span> the </span>hydrogen bonds to break<span> completely and allows water molecules to escape into the air as gas (steam or water vapor). When water freezes, water molecules form a crystalline structure maintained by </span>hydrogen bonding<span>. Solid water, or </span>ice<span>, is less dense than liquid water.</span>
The problem you have written you almost have it solved. Take the moles that you have calculated and multiply that by the molecular weight to get the grams.
The STP problem:
use the moles you calculated along with 1 atm for Pressure, and 273 for the temperature and plug into the PV = nRT equation. (also use 0.0821 for R)
From there you can solve for the volume
Hope this helps!
A is correct just compare answers with yahoo