Covalent and hydrogen bonds
Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
Answer:- 171 g
Solution:- It asks to calculate the grams of sucrose required to make 1 L of 0.5 Molar solution of it.
We know that molarity is moles of solute per liter of solution.
If molarity and volume is given then, moles of solute is molarity times volume in liters.
moles of solute = molarity* liters of solution
moles of solute = 0.5*1 = 0.5 moles
To convert the moles to grams we multiply the moles by molar mass.
Molar mass of sucrose = 12(12) + 22(1) + 11(16)
= 144 + 22 + 176
= 342 grams per mol
grams of sucrose required = moles * molar mass
grams of sucrose required = 0.5*342 = 171 g
So, 171 g of sucrose are required to make 1 L of 0.5 molar solution.
Cans aren't entirely made of tin because of rusting. When scratched(which happens quite frequently to cans) the tin is in more danger of rusting. This is why the cans are coated in a layer of tin rather than the whole can is made of it.
A high - energy state of matter made up of a swirling, ionized gas
Halite crystal is growing and can attach very quickly and eventually form a smooth, stable faces where new atoms can easily attach themselves.