(C). Remember gravity provides an acceleration of 9.81m/s^2, so the y component of velocity initial is zero because it isn’t already falling, and we have the height, so basically we use the kinematic equation vf^2=vi^2+2ad, substitute given values and you get vf^2=2(9.81)(65) which is 1275, when you take the square root you get 35.7m/s for final velocity
(B). Then you use vf=vi+at to get the equation 35.7=(9.81)t, when you divide out you get 3.64s for time t
(A). Finally, since we assume that there is no acceleration or deceleration horizonatally, we just multiply the time taken for it to hit the ground and the initial speed ((3.64)(35.7)) to get 129.96, with significant figures I would round that to 130 metres.
**this is in the order that I felt was easiest to answer**
Answer: Average Velocity = - 643.42 i + 512.66 j m/s
Magnitude = 822.7 m/s
Direction = 141.45°
Explanation:
r = 3.84 x 10^8 m
w = 2.46 x 10^-6 rad/s
Formula for Average velocity = displacement / time
at t = 0
x(0) = r
y(0) = 0
at t = 8.45 days
= 8.45 x 24 x 3600 s =730080 sec
w t = 2.46 x 10^-6 x 730080 = 1.80 rad Or 102.90°
xf = r cos(w t) = - 0.2233r
yf = r sin(w t) = 0.9747r
Displacement = (xf - x0)i + (yf - y0)j = -1.2233r i + 0.9747r j
<v> = dispalcement / t = (-1.2233r i + 0.9747r j ) / (730080 s )
= - 643.42 i + 512.66 j m/s
Magnitude
= sqrt(643.42^2 + 512.66^2)
= 822.7 m/s
Direction
= 180 - tan^-1(512.66 / 643.42)
= 141.45°
(c) is the correct choice.
El Nino (a), Earth's orbit (b), and solar energy output (d) are all "natural" occurrences. You can't do a thing aboutum.
Fossil fuels ... or, more precisely, humanity's use of vast quantities of fossil fuels as a convenient source of huge quantities of energy ... and the subsequent increase of Carbon Dioxide in the planet's atmosphere, is not the result of "natural" processes. It's the result of human efforts to <em>alter and control</em> Nature, through <em>artificial</em> processes.
Answer:
Infrared photons carry lower radiation energy than the visible light.
Explanation:
- Each photon carries an energy that is directly proportional to its frequency, being this proportionality constant the Planck's constant h.
- So, we can write the energy of a single photon as follows:

- Since there exists an inverse relationship between wavelength and frequency, and infrared radiation has longer wavelengths, this means that its frequency is lower than the one of the visible light.
- So, an infrared photon carries less energy that one of the visible light.
Answer:
Momentum (p) is equal to the product of an object's mass (m) and its change in velocity (v).
Change in velocity (v) results in change in momentum (p), which is equal to impulse. Impulse (J) is also equal to an applied force (F) over a period of time (t).
Combining p=mv and J=F t together:
m (v final - v initial) = F t
(2,500 kg) (70 m/s - 30 m/s) = F (10 s)
Explanation:
Solving for F we get:
10,000 N of force