Its really hurts
Explanation:
Charge A and charge B are 2.2 m apart. Charge A is 1.0 C, and charge B is
2.0 C. Charge C, which is 2.0 C, is located between them and is in
electrostatic equilibrium. How far from charge A is charge C?
Answer:

Explanation:
Using kinematics equations:

Use
due to condition of distance traveled.
Solving second equation for time, there are two solutions. t=0 and

Use the expression in the first equation to have

Using trigonometric identities, you have the answer of the distance.
By doing the ratio for two different angles, you have the second answer. Due to sine function properties, the distances can be the same to complementary angles. Example, for 20° and 70°, the distance is the same.
I thinks its He uses proof to show the evidence is relevant. But im not totally positive on it hope this helps
To solve this problem we will apply the concepts related to electric potential and electric potential energy. By definition we know that the electric potential is determined under the function:

= Coulomb's constant
q = Charge
r = Radius
At the same time

The values of variables are the same, then if we replace in a single equation we have this expression,

If we replace the values, we have finally that the charge is,




Therefore the potential energy of the system is 