Density is mass per unit volume
remember
p= m/v where v is vol, m is mass and p is density
Explanation:
For this problem, use the first law of thermodynamics. The change in energy equals the increase in heat energy minus the work done.
ΔU=Q−W
We are not given a value for work, but we can solve for it using the force and distance. Work is the product of force and displacement.
W=FΔx
W=3N×2m
W=6J
Now that we have the value of work done and the value for heat added, we can solve for the total change in energy.
ΔU=Q−W
ΔU=10J−6J
ΔU=4J
Answer is 4J
i think this may help you very much
The horizontal speed has no effect on the answer.
It doesn't matter whether you flick a marble horizontally from the roof,
fire a high-power rifle horizontally from the roof, drive a school bus straight
off the roof, or drop a bowling ball from the roof with zero horizontal speed.
Their vertical speed is completely determined by gravity, (and it happens to
be the same for all of them).
Handy dandy formula for the distance covered by anything that starts out
with zero speed and accelerates to the end:
Distance = (1/2) (acceleration) x (time)²
If the beginning of the journey is on Earth, then the acceleration is
9.8 m/s² ... the acceleration of gravity on Earth. We'll assume that
the 55-meter rooftop in the question is part of a building on Earth.
55 meters = (1/2) (9.8 m/s²) x (time)²
Divide each side
by 4.9 m/s² : 55 m / 4.9 m/s² = (time)²
(time)² = (55/4.9) sec²
Square-root
each side: time = √(55/4.9 sec²)
= 3.35 sec .
Answer:
Interface
Explanation:
This is a classic example of Interface technology.
An interface allows different software packages to communicate without re-entering data.
Here in this case also systems are able to communicate with one another without duplicating data entry. For example, practice management software and another for their electronic health record.