<span> Rising, warm, moist air masses cool and release precipitation as they rise and then at high altitude, cool
and sink back to the surface as dry air masses after moving north or south of the tropics.
</span>
Answer:
v = 7.67 m/s
Explanation:
The equation for apparent weight in the situation of weightlessness is given as:
Apparent Weight = m(g - a)
where,
Apparent Weight = 360 N
m = mass passenger = 61.2 kg
a = acceleration of roller coaster
g = acceleration due to gravity = 9.8 m/s²
Therefore,
360 N = (61.2 kg)(9.8 m/s² - a)
9.8 m/s² - a = 360 N/61.2 kg
a = 9.8 m/s² - 5.88 m/s²
a = 3.92 m/s²
Since, this acceleration is due to the change in direction of velocity on a circular path. Therefore, it can b represented by centripetal acceleration and its formula is given as:
a = v²/r
where,
a = centripetal acceleration = 3.92 m/s²
v = speed of roller coaster = ?
r = radius of circular rise = 15 m
Therefore,
3.92 m/s² = v²/15 m
v² = (3.92 m.s²)(15 m)
v = √(58.8 m²/s²)
<u>v = 7.67 m/s</u>
E the temperature of a substance. Water has a very high specific heat. That means it needs to absorb a lot of energy before its temperature changes. Sand , on the other hand, have lower specific heats. This means that their temperatures change more quickly. When the summer sun shines down on them, they quickly become hot.
Answer:
Magnitude of vector A = 0.904
Explanation:
Vector A , which is directed along an x axis, that is

Vector B , which has a magnitude of 5.5 m


The sum is a third vector that is directed along the y axis, with a magnitude that is 6.0 times that of vector A 
Comparing we will get

Substituting in 

So we have

Magnitude of vector A = 0.904