1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
3 years ago
9

A source emits monochromatic light of wavelength 495 nm in air. when the light passes through a liquid, its wavelength reduces t

o 434 nm what is the liquid's index of refraction?
a. 1.14
b. 1.49
c. 2.03
d. 1.26
e. 1.33
Physics
1 answer:
Katyanochek1 [597]3 years ago
6 0
By definition, the refractive index is
n = c/v
where c =  3 x 10⁸ m/s,  the speed of light in vacuum
v = the speed of light in the medium (the liquid).

The frequency of the light source is
f = (3 x 10⁸ m/s)/(495 x 10⁻⁹ m) = 6.0606 x 10¹⁴ Hz

Because the wavelength in the liquid is 434 nm = 434 x 10⁻⁹ m, 
v = (6.0606 x 10¹⁴ 1/s)*(434 x 10⁻⁹ m) = 2.6303 x 10⁸ m/s

The refractive index is (3 x 10⁸)/(2.6303 x 10⁸) = 1.1406

Answer:  a.  1.14
You might be interested in
Explain when a falling object is in free fall.
Ksenya-84 [330]
There is no gravity
3 0
3 years ago
Read 2 more answers
A toroidal coil of N turns has a central radius b and a square cross section of side a. Find its self-inductance.
Xelga [282]

Answer:

L = \frac{\mu_0 N^2 (a^2)}{2\pi b}

Explanation:

As we know that magnetic field due to torroid is given as

B = \frac{\mu_0 N i}{2\pi b}

this is approximately constant magnetic field along the axis of the torroid

now the flux linked with one coil of the torroid is given as

\phi = B.A

\phi = \frac{\mu_0 N i}{2\pi b}(a^2)

now total flux of N number of coils is given as

\phi_{total} = \frac{\mu_0 N^2 i(a^2)}{2\pi b}

now we know that self inductance is the property of coil in which flux of the coil will link with the current in the coil

So we know that

L = \frac{\phi}{i}

L = \frac{\mu_0 N^2 (a^2)}{2\pi b}

3 0
3 years ago
In an engine, an almost ideal gas is compressed adiabatically to half its volume. In doing so, 1850 J of work is done on the gas
Oliga [24]

Answer:

The value of change in internal l energy of the gas = 1850 J

Explanation:

Work done on the gas (W) =  - 1850 J

Negative sign is due to work done on the system.

From the first law  we know that Q = Δ U + W ------------- (1)

Where Q = Heat transfer to the gas

Δ U = Change in internal energy of the gas

W = work done on the gas

Since it is adiabatic compression of the gas so heat transfer to the gas is zero.

⇒ Q = 0

So from equation (1)

⇒ Δ U = - W ----------------- (2)

⇒ W = - 1850 J (Given)

⇒ Δ U = - (- 1850)

⇒ Δ U = + 1850 J

This is the value of change in internal energy of the gas.

6 0
2 years ago
Emily holds a banana of mass m over the edge of a bridge of height h. She drops the banana and it falls to the river below. Use
bearhunter [10]

Answer:

The mass of the banana is m and it is at height h.

Applying the Law of Conservation of Energy

              Total Energy before fall = Total Energy after fall

                                E_{i}  = E_{f}

Here, total energy is the sum of kinetic energy and potential energy

K.E_{i} + P.E_{i} = K.E_{f} + P.E_{f}       (a)

When banana is at height h, it has

                 K.E_{i} = 0    and    P.E_{i} = mgh          

and when it reaches the river, it has

       K.E_{f}  = 1/2mv^{2}    and   P.E_{f}  = 0

Putting the values in equation (a)

                              0 + mgh = 1/2mv^{2} + 0

                                      mgh = 1/2mv^{2}

<em>cutting 'm' from both sides</em>

<em>                                           </em>gh = 1/2v^{2}

                                          v = \sqrt{2gh}

Hence, the velocity of banana before hitting the water is

                                          v = \sqrt{2gh}

5 0
2 years ago
Waves in a fish bowl jostled by the Thingamajigger move to the sides at an average velocity of 0.50 m/s. If they occur once ever
Colt1911 [192]

Answer:

0.125 m

Explanation:

In this problem, we have:

v = 0.50 m/s is the average velocity of the wave

T = 0.25 s is the period of the wave

We can find the frequency of the wave, which is equal to the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{0.25 s}=4 Hz

The problem is asking us to find the distance between two crests of the wave: this is equivalent to the wavelength. The wavelength is related to the average velocity and the frequency by the formula:

\lambda=\frac{v}{f}

Substituting the numerical values, we find

\lambda=\frac{0.5 m/s}{4 Hz}=0.125 m

4 0
3 years ago
Other questions:
  • A spinning disc rotating at 130 rev/min slows and stops 31 s later. how many revolutions did the disc make during this time?
    15·1 answer
  • What is the change in its velocity, v, during this 0.80-s interval?
    13·1 answer
  • A 50-kilogram student is running and has 225 joules of kinetic energy.What is the students speed in meters per second
    11·2 answers
  • What does each of the facts shown above tell you about the element
    14·1 answer
  • During an experiment, a student moved a cell from pure water to salted water. What will most likely happen to the cell?
    10·1 answer
  • Gizmo force and fan cart
    5·1 answer
  • The lower the angle of the slope, ________ the acceleration along the ramp, therefore, the speed at the bottom of a slope will b
    13·1 answer
  • a pool ball leaves a 0.60-meter high table with an initial high table with an initial horizontal velocity of 2.4m/s. what is the
    11·1 answer
  • What are the three types of muscle fibers?
    7·2 answers
  • Why do fishermen like fishing during a full moon?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!