Answer:
There are no examples but this should be evaporation
Explanation:
Answers:
No, They will attract each other, B, and neither direction
Explanation:
Since the two already presented particles in the diagram represent both opposing charges due to the direction of the arrows (the arrows facing away from the particle shows a positive charge and the particles facing towards the particle show a negative charge), not only because of this but as the arrows between the particles show an attracting magnetic field, then it can be concluded that the particles will attract to each other and if another particle was introduced into the diagram of a positive charge, then it would attract to the negatively charged particle. If you have any questions or need further explanation, please comment below. E2021, have a great day.
Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
The answer is not B or D because they need light co2 and water to make their food so B and D are out. and unless someone is walking during winter to feed it. It will not be A so the answer is C.
Explanation: