The number of C atoms in 0.524 moles of C is 3.15 atoms.
The number of
molecules in 9.87 moles
is 59.43 molecules.
The moles of Fe in 1.40 x
atoms of Fe is 0.23 x 
The moles of
in 2.30x
molecules of
is 3.81.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
A. The number of C atoms in 0.524 mole of C:
6.02214076 ×
x 0.524 mole
3.155601758 atoms =3.155 atoms
B. The number of
molecules in 9.87 moles of
:
6.02214076 ×
x 9.87
59.4385293 molecules= 59.43 molecules
C. The moles of Fe in 1.40 x
atoms of Fe:
1.40 x
÷ 6.02214076 × 
0.2324754694 x
moles.
0.23 x
moles.
D. The moles of
in 2.30x
molecules of
:
2.30x
÷ 6.02214076 × 
3.819239854 moles=3.81 moles
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
Sodium reacts with water to form a colorless solution of sodium hydroxide and hydrogen gas.
The volume of 10 grams of frozen water is more than the volume of 10 grams of liquid water
Answer:
Moles=2.04×10^(-6)
Explanation:
No. Of moles=no. Of particles/ Avogadro's no
(Where no. Of particles may be atoms molecules or compounds)
Moles=1.23×10^18/6.022×10^23
Moles=0.204×10^(-5)
Moles=2.04×10^(-6)
0.003 moles of NaOH was used in the titration.
<h3>What is titration?</h3>
The concentration of an identified analyte can be found using a simple laboratory technique called titration. As a standard solution with a given concentration and volume, a reagent known as the titrant or titrator is created.
By using a solution with a known concentration to measure the concentration of an unknown solution, this process is known as titration. To a known volume of the analyte (the unknown solution), the titrant (the known solution) is typically added from a buret until the reaction is finished. To ascertain the unknown concentration of an identifiable analyte, titration, commonly referred to as titrimetry, is a widely used quantitative laboratory analytical technique (Medwick and Kirschner, 2010). Volume measurements are a crucial component of titration
Concentration in mol/dm3 =
Amount of solution mol
= concentration in mol/dm3 × volume in dm3
Amount of sodium hydroxide
= 0.100 × 0.0250
= 0.00250 mol
To know more about titration, visit:
brainly.com/question/27394328
#SPJ9