Answer:
Miter joint
Explanation:
Made by fastening together usually perpendicular parts with the ends cut at an angle
Answer:
the location of the center of gravity for the entire body is 1.08 m
Explanation:
Given the data in the question;
w1 = 458 N, y1 = 1.34 m
w2 = 120 N, y2 = 0.766 m
w3 = 89.8 N, y2 = 0.204 m
The location arrangement of the body part is vertical, locate the overall centre of gravity by simply replacing the horizontal position x by the vertical position y as measured relative to the floor.
so,
= (w1y1 + w2y2 + w3y3 ) / ( w1 + w2 + w3 )
so we substitute in our values
= (458×1.34 + 120×0.766 + 89.8×0.204 ) / ( 458 + 120 + 89.8 )
= 723.9592 / 667.8
= 1.08 m
Therefore, the location of the center of gravity for the entire body is 1.08 m
Answer:
Explanation:
given that
Distance above the ground, s = 1.2 m
Time taken by the ball, t = 3 s
Velocity of the ball, v = 1.2/3 = 0.4 m/s
Maximum height reached by the ball is then given by the formula
H = v² / 2g
H = 0.4² / 2 * 9.8
H = 0.16 / 19.6
H = 0.0082 m or rather, 0.82 cm
I attached the missing picture.
Let's analyze the situation as spring goes from stretched to unstretched state.
When you stretch the string you have to use force against ( you are doing work) this energy is then stored in the spring in the form of potential energy. When we release the spring the energy is being used to push the two carts. When the spring reaches its unstretched length its whole initial potential energy has been used on the carts, and this is the moment when two carts have maximum velocity.
The potential energy of compressed ( stretched) spring is:

The kinetic energy of two carts is:

So we have:

Momentum also has to be conserved:

Momentum before the release of the spring is zero so it has to stay zero. We plug this back into the expresion we got from law of conservation of energy and we get:

Now we go back to the momentum equation:
At the pituitary level, TSH<span> is a glycoprotein </span>secreted by<span> the basophilic thyrotropes.</span>TSH secretion<span> is </span>regulated<span> by negative feedback of thyroid hormones, i.e. the higher the serum levels of these hormones, the lower </span>TSH release<span> and vice versa, and stimulation from TRH. ... Cells of the thyroid gland contain </span>TSH<span> receptors....did i help?</span>