Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years
Star 1 - 4 hours right ascension
Star 2 - 3 hours right ascension
Subtracting hours right ascension
4 hours right ascension - 3 hours right ascension = 1 hours right ascension.
Thus,
star 1 will rise 1 hour before star 2
Answer:
because
Explanation:
because we need eye to see if you don't have eyes how you regnise some one
if you have ears how can you know who's voice is who's
if don't have fingers how can you know what your are holding this is why they are called physical sensors
Answer:
The value is
Explanation:
From the question we are told that
The amount of power delivered is 
The time taken is 
The wavelength is 
Generally the energy delivered is mathematically represented as

Where
is the Planck's constant with value 
c is the speed of light with value 
So

=> 
The most useful meteorological measurement for forecasting freezing precipitation is b. radiosonde soundings
<h3>
Radiosonde </h3>
At high altitudes, radiosondes are battery-powered telemetry sensor bundles that detect altitude, pressure, temperature, relative humidity, wind (both speed and direction), and cosmic ray measurements. They are commonly taken into the atmosphere by weather balloons.
Rawindsonde is an acronym for radar wind sonde, a type of radiosonde that tracks its position as it rises through the sky to provide wind speed and direction. Another type of radiosonde is one that falls to the ground after being released from an aircraft, as opposed to being carried by weather balloons. The term "dropsondes" is used to describe this group of radiosondes. The majority of operational atmospheric data assimilation methods depend heavily on radiosondes.
Learn more about radiosonde here:
brainly.com/question/10510287
#SPJ4