Answer: 0.0146m
Explanation: The formula that defines the velocity of a simple harmonic motion is given as
v = ω√A² - x²
Where v = linear velocity, A = amplitude = 1.69cm = 0.0169m, x = displacement.
The maximum speed of a simple harmonic motion is derived when x = A, hence v = ωA
One half of maximum speed = speed of motion
3ωA/2 = ω√A² - x²
ω cancels out on both sides of the equation, hence we have that
A/2 = √A² - x²
(0.0169)/2 = √(0.0169² - x²)
0.00845 = √(0.0169² - x²)
By squaring both sides, we have that
0.00845² = 0.0169² - x²
x² = 0.0169² - 0.00845²
x² = 0.0002142
x = √0.0002142
x = 0.0146m
7.5 x 10⁻¹¹m. An electromagnetic wave of frecuency 4.0 x 10¹⁸Hz has a wavelength of 7.5 x 10⁻¹¹m.
Wavelength is the distance traveled by a periodic disturbance that propagates through a medium in a certain time interval. The wavelength, also known as the space period, is the inverse of the frequency. The wavelength is usually represented by the Greek letter λ.
λ = v/f. Where v is the speed of propagation of the wave, and "f" is the frequency.
An electromagnetic wave has a frecuency of 4.0 x 10 ¹⁸Hz and the speed of light is 3.0 x 10⁸ m/s. So:
λ = (3.0 x 10⁸ m/s)/(4.0 x 10¹⁸ Hz)
λ = 7.5 x 10⁻¹¹m
Answer:
a) 
b) 

Explanation:
Searching the missed information we have:
E: is the energy emitted in the plutonium decay = 8.40x10⁻¹³ J
m(⁴He): is the mass of the helium nucleus = 6.68x10⁻²⁷ kg
m(²³⁵U): is the mass of the helium U-235 nucleus = 3.92x10⁻²⁵ kg
a) We can find the velocities of the two nuclei by conservation of linear momentum and kinetic energy:
Linear momentum:


Since the plutonium nucleus is originally at rest,
:
(1)
Kinetic Energy:

(2)
By entering equation (1) into (2) we have:
Solving the above equation for
we have:

And by entering that value into equation (1):
The minus sign means that the helium-4 nucleus is moving in the opposite direction to the uranium-235 nucleus.
b) Now, the kinetic energy of each nucleus is:
For He-4:

For U-235:

I hope it helps you!
<h3>
Answer:</h3>
30.4 km/hr
<h3>
Explanation:</h3>
<u>We are given</u>;
- Speed in the first 2 hours as 25 km/hr
- Speed in the next 3 hours as 34 km/hr
We are required to determine the average velocity in km/hr
- To get the average velocity we divide total distance by total time.
- Thus, we need to determine the total distance
Distance = Speed × time
Distance covered in the first 2 hours;
= 25 km/hr × 2 hours
= 50 km
Distance in the next 3 hours
= 34 km/hr × 3 hours
= 102 km
Therefore, total distance = 50 km + 102 km
= 152 km
Total time = 2 hrs + 3 hrs
= 5 hours
Therefore;
Average speed = 152 km ÷ 5 hours
= 30.4 km/hr
Thus, the average speed is 30.4 km/hr
The main component in a reflecting telescope is a mirror where the light will bounce off and is then focused into a smaller area. In contrast, a refracting telescope uses lenses that focus the light as it travels towards the other end.
Two different types of reflecting telescopes are:
1.Cassegrain reflector
2.Newtonian telescope
Explanation:
- The distinction between the two is in how they manipulate the incoming light in order to magnify the image. The main component in a reflecting telescope is a mirror where the light will bounce off and is then focused into a smaller area.
- Key advantage of reflecting telescopes is how big you can make them. With lenses, the maximum size is limited to about one meter, largely because of the problems stated above as well as the skyrocketing costs.
- The Newtonian telescope, also called the Newtonian reflector, is a type of reflecting telescope invented Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.
- The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture.