Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:

Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=

Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=
Now, the relation between energies ratio and masses is:



'In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy' is true for transverse waves only.
'In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy' is true for longitudinal waves only.
'Many wave motions in nature are a combination of longitudinal and transverse motion' is true for both longitudinal and transverse waves.
<u>Explanation:</u>
Longitudinal waves are those where the direction of propagation of particles are parallel to the medium' particles. While transverse waves propagate perpendicular to the medium' particles.
As wave motions are assumed to be of standing waves which comprises of particles moving parallel as well as perpendicular to the medium, most of the wave motions are composed of longitudinal and transverse motion.
So the option stating the medium' particle moves perpendicular to the direction of the energy flow is true for transverse waves. Similarly, the option stating the medium' particle moves parallel to the direction of flow of energy is true for longitudinal waves only.
And the option stating that wave motions comprises of combination of longitudinal and transverse motion is true for both of them.
First method
initial distance = 16m
final distance= 43 m
total distance covered= final -initial
=43m -16m
=27m
Second method
Si= 16m
Sf =43 m
t= 12 s
first we will find V
V = (Sf-Si)/ t
V =( 43- 16)/ 12
V = 27/12 ⇒ V= 9/4
V= distance / time
distance= V×time
distance = (9/4) ×12
distance =27
The wavelengths of the light are 4.3 * 10^-12 m and 0.2 m respectively.
<h3>What is wavelength?</h3>
The term wavelength has to do with the horizontal distance that is covered by a wave. We know that a long wavelength implies that the wave is able to travel a long distance from one point to another.
Given that;
c = λf
c = speed of light
λ = wavelength of ight
f = frequency of light
Thus;
λ = 3 * 10^8/ 7.00 x 10^19
λ = 4.3 * 10^-12 m
λ = 3 * 10^8/1.50 x 10^9
λ = 2 * 10^-1 or 0.2 m
Learn more about wavelength:brainly.com/question/13533093
#SPJ1
Missing parts:
What are the wavelengths of electromagnetic wave in free space that have the following frequencies? (a) 7.00 x 10^19 Hz______ pm (b) 1.50 x 10^9 Hz__________ cm