1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
2 years ago
8

Sam is pulling a box up to the second story of his apartment via a string. The box weighs 53.3 kg and starts from rest on the gr

ound. Sam is pulling upwards with a force of 64 N. At the top, the box is pulled up to a height of 19.1 m. What is the total work performed for Sam to pull the box up to his height?
Physics
1 answer:
castortr0y [4]2 years ago
7 0

Answer:

W = 1222.4 J = 1.22 KJ

Explanation:

The work done on an object is the product of the force applied on it and the displacement it covers as a result of this force. It must be noted that the component of displacement in the direction of force should only be used. Hence, the work can be calculated as:

W = F d Cosθ

where,

W = Work Done = ?

F = Force Applied = 64 N

d = Distance Covered by Box = 19.1 m

θ = Angle between force and displacement = 0°

Therefore,

W = (64 N)(19.1 m)Cos 0°

<u>W = 1222.4 J = 1.22 KJ</u>

You might be interested in
In the first direct detection of gravitational waves by LIGO in 2015, the waves came from A. the collapse of a nearby star into
diamong [38]

In the first direct detection of gravitational waves by LIGO in 2015, the waves came from the merger of two black holes. Option B is correct. This is further explained below.

<h3>What are gravitational waves?</h3>

A gravitational wave is simply defined as a ripple in space that is unseen though extremely rapid. Gravitational waves move at light speed. As they pass past, these waves compress and stretch everything in their path.

In conclusion, the merger of two black holes is the first direct detection of gravitational waves.

Read more about Wave

brainly.com/question/23271222

#SPJ1

8 0
2 years ago
A 0.50-kg mass attached to the end of a string swings in a vertical circle (radius 2.0 m). When the mass is at the highest point
il63 [147K]

Answer:

31.1 N

Explanation:

m = mass attached to string = 0.50 kg

r = radius of the vertical circle = 2.0 m

v = speed of the mass at the highest point = 12 m/s

T = force of the string on the mass attached.

At the highest point, force equation is given as

T + mg =\frac{mv^{2}}{r}

Inserting the values

T + (0.50)(9.8) =\frac{(0.50)(12)^{2}}{2}

T = 31.1 N

7 0
3 years ago
Read 2 more answers
Please help me with this please <br><br> I’ll mark you Brainly
ivolga24 [154]
I think it is option (C).

If the answer is helpful then mark me as brainly.
4 0
2 years ago
The next four questions refer to the situation below.
Anna11 [10]

Answer:

 t_{out} = \frac{v_s - v_r}{v_s+v_r} t_{in},      t_{out} = \frac{D}{v_s +v_r}

Explanation:

This in a relative velocity exercise in one dimension,

let's start with the swimmer going downstream

its speed is

         v_{sg 1} = v_{sr} + v_{rg}

The subscripts are s for the swimmer, r for the river and g for the Earth

with the velocity constant we can use the relations of uniform motion

           v_{sg1} = D / t_{out}

           D = v_{sg1}  t_{out}

now let's analyze when the swimmer turns around and returns to the starting point

        v_{sg 2} =  v_{sr}  - v_{rg}

         v_{sg 2} = D / t_{in}

         D = v_{sg 2}  t_{in}

with the distance is the same we can equalize

           v_{sg1} t_{out} = v_{sg2} t_{in}

          t_{out} =  t_{in}

           t_{out} = \frac{v_s - v_r}{v_s+v_r} t_{in}

This must be the answer since the return time is known. If you want to delete this time

            t_{in}= D / v_{sg2}

we substitute

            t_{out} = \frac{v_s - v_r}{v_s+v_r} ()

            t_{out} = \frac{D}{v_s +v_r}

7 0
2 years ago
car is moving at 40 m/s. At 10 meters the driver spots a deer on the road and instantly steps on the brakes. If the car is 400 k
Mice21 [21]

Answer:

32000 N

Explanation:

From the question given above, the following data were obtained:

Initial velocity (u) = 40 m/s

Distance (s) = 10 m

Final velocity (v) = 0 m/s

Mass (m) of car = 400 Kg

Force (F) =?

Next, we shall determine the acceleration of the the car. This can be obtained as follow:

Initial velocity (u) = 40 m/s

Distance (s) = 10 m

Final velocity (v) = 0 m/s

Acceleration (a) =?

v² = u² + 2as

0² = 40² + (2 × a × 10)

0 = 1600 + 20a

Collect like terms

0 – 1600 = 20a

–1600 = 20a

Divide both side by –1600

a = –1600 / 20

a = –80 m/s²

The negative sign indicate that the car is decelerating i.e coming to rest.

Finally, we shall determine the force needed to stop the car. This can be obtained as follow:

Mass (m) of car = 400 Kg

Acceleration (a) = –80 m/s²

Force (F) =?

F = ma

F = 400 × –80

F = – 32000 N

NOTE: The negative sign indicate that the force is in opposite direction to the motion of the car.

7 0
2 years ago
Other questions:
  • A solution with a pH of 7 is
    10·2 answers
  • A golf club hits a 0.0459 kg golf ball
    6·1 answer
  • A student says that a speed of 50 m/s is faster than a speed of 140 km/h because the number is bigger. What would you say to the
    5·1 answer
  • A long distance runner running a 5.0km track is pacing himself by running 4.5km at 9.0km/h and the rest at 12.5km/h. What is his
    5·1 answer
  • Elements are composed of atoms of at least two different types.<br> True<br> False
    8·1 answer
  • When studying atoms, scientists can ignore the ______ force between charged particles that make up the atoms because it is many
    9·2 answers
  • What is the definition for scientific model?​
    9·2 answers
  • 1. A block with a mass of 5.0 kg is pushed on a frictionless surface by applying a horizontal force of 80.0 N. The block starts
    13·1 answer
  • If a student weighs 100 pounds on Earth, how much more or less would she weigh on Pluto than Mars?
    6·1 answer
  • What is the difference between engineering controls and administrative controls?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!