Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.
I think it's 3. within an outer arm
Answer:
if the frequency is double, the wavelength is only half as long
Explanation:
Answer:
See Explanation
Explanation:
The principle of conservation of energy states that; energy can neither be created nor destroyed but is converted from one form to another.
In view of this principle, Ella can not be correct when she says that a lot of energy has disappeared. The use of the term "disappeared" connotes the idea that the energy no longer exists which does not happen.
Hence, energy can not "disappear" from hot water rather the energy in the water may be transferred to the surroundings.
Answer:
pretty sure its studying the atomic structure of a solid carbon dioxide. so c
Explanation: