Answer:
Simple harmonic motion is the movement of a body or an object to and from an equilibrium position. In a simple harmonic motion, the maximum displacement (also called the amplitude) on one side of the equilibrium position is equal to the maximum displacement.
The force acting on an object must satisfy Hooke's law for the object to undergo simple harmonic motion. The law states that the force must be directed always towards the equilibrium position and also directly proportional to the distance from this position.
Answer:
The object is also positively charged because same or alike charges repel
Explanation:
1.
Answer:
Part a)

Part b)

Explanation:
Part a)
Length of the rod is 1.60 m
diameter = 0.550 cm
now if the current in the ammeter is given as

V = 17.0 volts
now we will have


R = 0.91 ohm
now we know that



Part b)
Now at higher temperature we have


R = 0.98 ohm
now we know that



so we will have



2.
Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that current density is defined as

now we have

Now we have


so we will have

Part b)
now we have

so we have


so we have


Answer:
Either Answer you Put is fine i put one as an answer and the other is the sample response and got it right.
My Answer: rather than typical sea floor rock, which had been shocked, melted, and ejected to the surface in minutes, and evidence of colossal seawater movement directly afterwards from sand deposits. Crucially the cores also showed a near complete absence of gypsum, a sulfate-containing rock, which would have been vaporized and dispersed as an aerosol into the atmosphere, confirming the presence of a probable link between the impact and global longer-term effects on the climate and food chain.
Sample Response:
Samples from the Western Hemisphere contained significantly higher amounts of shock-fractured quartz. This led Walter and Luis Alvarez to hypothesize that the asteroid impact site was in the Western Hemisphere.
Explanation:
Answer:
Distance = 30m
Displacement = 6m W
Explanation:
Given the following:
Movement 1 = 18m W
Movement 2 = 12m E
Diatance is a scalar quantity with only magnitude and no direction. That is, in Calculating the distance moved by the locomotive, the direction of travel or movement of the object is not considered. It only measures the total amount of movement made during the Time of motion.
Therefore, total distance traveled equals :
Movement 1 + movement 2
18m + 12m = 30m
B) Displacement also measures the movement made by an object. However, Displacement is a vector quantity and therefore, considers both magnitude and direction of travel of the object. Therefore, it measures the overall change in position of the object from its starting position.
Therefore, Displacement of the locomotive equals:
18m W - 12m E = 6m E