how does the electric force between two charged particles change if the distance between them is increased by a factor of 3?
a. it is reduced by a factor of 3
It helps because it's being transported blah blah whatever the last person said when you first asked this question
Answer:
K =6.697 Kg/s²
Explanation:
Given:
delta m =41 g = 0.041 kg
delta x = 6cm = 0.06m
g = 9.8 m/s²
according to the given formula
K = delta m g /delta x
K = (0.041 kg × 9.8 m/s²) / 0.06m
K =6.697 Kg/s²
The Gay-Lussac's law or Amonton's law states that the pressure of a given amount of a gas is directly propotional to its temperature if its volume is kept constant .
P∝T
and
The Charles Law states that volume of given amount of gas at constant pressure is directly propotional to temperature.
V∝T
So, by Gay-Lussac's law if we increase the temperature the Pressure will increase and by Charles Law, if we increase the temperature the volume will increase.
Therefore, if the temperature of gas increases either the pressure of the gas, the volume of the gas, or both, will increase.
Hence,
Answer is option C
Answer:
The correct answer is d Both the observer's are correct
Explanation:
We know by postulates of relativity that laws of physics are same in different inertial frames.
Thus for each of the frames they make observations related to their frames and since the observations are true for their individual frames they both are correct. But when we compare the two frames we need to use transformation equations to compare both the results.