Answer:
776.6 w
1.04 hp
Explanation:
given:
Mass, m = 190kg
height change, h = 25m
time elapsed, t = 60 s
acceleration due to gravity, g = 9.81 m/s²
Potential energy required raising 190 kg of water to a height of 25m
= mgh
= 190 x 9.81 x 25
= 46,597.5 J
Power required in 60 s
= Energy required ÷ time elapsed
= 46,597.5 ÷ 60
= 776.6 Watts (Use conversion 1 W = 0.00134102 hp)
= 776.6 w x 0.00134102 hp/w
= 1.04 hp
Answer:
C. Both technicians A and B
Explanation:
Both technicians are absolutely correct because a functional test light is meant to light on both test point if the fuse is working fine which implies that, if the test light doesn't light on both sides then there must be a fault with the fuse. So, both technicians A and B are very correct.
Answer:
a) Δp = - 10113.2 Kg m / s, b) he rate of change is negative, c) F = 140.46N
Explanation:
a) For this part let's analyze a water particle, it has a velocity of 66 m / s and when it collides with the building its velocity changes to zero, so the change in moment is
Δp = mv_f - m v₀
Δp = -m v₀ (1)
the change of the moment in a second is
if 2429 gallons arrive in in minute (60s) in a second how many gallons arrive
c_agua = 2429/60
c_water = 40,483 gallon/ s
let's use the concept of density to find the mass
ρ = m / V
m = ρ V
let's reduce gallons to liters
c_water = 40,483 gal (3,785 l / 1 gal) = 153.23 l
m = 1 153.23
m 153.23 kg
we substitute in 1
Δp = - 153.23 66
Δp = - 10113.2 Kg m / s
b) From the previous result the rate of change is negative
c) Let's use the impulse ratio
I = f t = Δp
F t = Δp
F = Δp / t
F =
F = 140.46 N
Answer:
<h2>v= 2.74m/s</h2>
Explanation:
We can solve for the initial velocity using the first equation of motion

where
v= final velocity
u= initial velocity
a= acceleration
t= time in seconds
Given data
final velocity= 2.41 m/s
initial velocity v =?
time t= 2.5 seconds
acceleration a= 
substituting we have
v= 2.41+0.13(2.5)
v= 2.41+0.325
v= 2.735m/s
v= 2.74m/s
the final velocity is 2.74 m/s
To1. PE = mgh
PE potential energy
m mass
g 9.81
h height
P = PE / t
P power
t time