Answer:
b. The final state of the substance is a gas.
d. The sample is initially a liquid. One or more phase changes will occur.
Explanation:
Methane has the following properties:
- Normal melting point: 90.7 K
- Normal boiling point: 111.65 K
*"Normal" refers to normal pressure (1 atm).
According to this, we can affirm:
- Below 90.7 K, methane is solid.
- Between 90.7 K and 111.65 K, methane is liquid.
- Above 111.65 K, methane is gas.
<em>A sample of methane at a pressure of 1.00 atm and a temperature of 93.1 K is heated at constant pressure to a temperature of 158 K. Which of the following are true? Choose all that apply.</em>
<em>a. The liquid initially present will solidify.</em> FALSE. The liquid will vaporize.
<em>b. The final state of the substance is a gas.</em> TRUE.
<em>c. The sample is initially a solid.</em> FALSE. The sample is initially a liquid.
<em>d. The sample is initially a liquid. One or more phase changes will occur. </em>TRUE.
Answer: 0,4278g of F and 0,4191g of Fe
Explanation: it's possible to calculate the mass of each element by multiplying the percentage (decimal) of the element by the mass of the compound.
For Fluorine (F)
0,847g * 0,5051 = 0,4278g of F
For iron (Fe)
0,847 * 0,4949 = 0,4191g of Fe
This is determined because even when the compound is decomposed, due to conservative law of mass, the decomposition process do not affect the amount of matter, so the mass of the elements remain even if they are separated from the original molecule.
At the end, the sum of the elements masses should be the total mass of the compound.
It can change in C. compounds to change when elements combine that will form
I would say 2 because co2 goes out and o goes in
Answer:
0
Explanation:
There are no unpaired electrons in the given element. It must be noted that for the atom above, we have even numbered electrons. The total electron we are having here is 18.
Now, we must also know that while the s orbital is not degenerate, the P orbital is degenerate. What this mean is that the p orbital is broken down into three different sub orbitals which is the Px , Py and Pz. Hence we can see that there are 6 electrons to enter into the P orbital too.
We can see that all the S orbitals have been completely filled with two electrons alike each. This is also the case for the P orbital as the 3 suborbitals take in 2 each to give a total of six