Answer:
The vapor pressure of the solution is 23.636 torr
Explanation:

Where;
is the vapor pressure of the solution
is the mole fraction of the solvent
is the vapor pressure of the pure solvent
Thus,
15.27 g of NaCl = [(15.27)/(58.5)]moles = 0.261 moles of NaCl
0.67 kg of water = [(0.67*1000)/(18)]moles = 37.222 moles of H₂O
Mole fraction of solvent (water) = (number of moles of water)/(total number of moles present in solution)
Mole fraction of solvent (water) = (37.222)/(37.222+0.261)
Mole fraction of solvent (water) = 0.993
<u>Note:</u> the vapor pressure of water at 25°C is 0.0313 atm
Therefore, the vapor pressure of the solution = 0.993 * 0.0313 atm
the vapor pressure of the solution = 0.0311 atm = 23.636 torr
Answer:
0.007 g of deprenyl dose is required fro the patient with body mass of 70 kilograms.
Explanation:
The dose for treating Parkinson’s disease = 100 μg/kg body weight
Mass of patient's body = 70 kg
Amount of dose of deprenyl required = 100 μg/kg × 70 kg = 7,000 μg
1 μg = 0.00001 g
7,000 μg = 7,000 × 0.000001 g = 0.007 g
0.007 g of deprenyl dose is required fro the patient with body mass of 70 kilograms.
Is there any more info lol
But from thinking I got A=DH^2*BC
Answer:
The correct option is C
Explanation:
From the question we are told that
The reaction is

Generally
Here
is the change in enthalpy
is the change in the internal energy
is the difference between that number of moles of product and the number of moles of reactant
Looking at the reaction we can discover that the elements that was consumed and the element that was formed is
and
and this are both gases so the change would occur in the number of moles
So
The negative sign in the equation tell us that the enthalpy
would be less than the Internal energy 