The options missing are;
A. Make only a few changes to the manipulated variable.
B. Identify any biases about the answer to the scientific question.
C. Include as many details as possible when writing the conclusion.
D. Share her ideas through peer review.
Answer:
B. Identify any biases about the answer to the scientific question.
Explanation:
Since the question is asking what can be done to improve the quality of the results, it means what can the scientist do to make sure that the result answers the question properly and has little or no biases.
Thus, looking at the options, the only one that comes close to actually improving on the quality of the results before finalizing is option B where the scientist is to identify any biases.
Answer:
<u><em>conditional positive regard</em></u>
Explanation:
Condition Positive Regard can be described as a situation in which positivity, love or affection are only given when certain criteria or demands are met. Whereas on the contrary, an unconditional positive regard occurs when a person is loved without any demands or criteria.
Condition positive regards means to love or show affection for someone or something depending on its values in our eyes.
Answer:
The table can be used to predict the properties of elements, even those that have not yet been discovered. Columns (groups) and rows (periods) indicate elements that share similar characteristics.
The table makes trends in element properties apparent and easy to understand.
The table provides important information used to balance chemical equations. Atoms are important because they form the basic building blocks of all visible matter in the universe. There are 92 types of atoms that exist in nature, and other types of atoms can be made in the lab. The different types of atoms are called elements. Hydrogen, gold and iron are examples of elements comprised of unique types of a single kind of atom.
Explanation:
Answer:
E_total = 1.30 10¹⁰ C / m²
Explanation:
The intensity of the electric field is
E = k q / r²
on a positive charge proof
The total electric field at the midpoint is
as q₁= 6 10⁻⁶ C the field is outgoing to the right
for charge q₂ = -3 10⁻⁶ C, the field is directed to the right, therefore
E_total = E₁ + E₂
E_total = k q₁ / r₁² + k q₂ / r₂²
r₁ = r₂ = r = 4 10⁻² m
E_total = k/r² (q₁ + q₂)
we calculate
E_total = 9 10⁹ / (4 10⁻²)² (6.0 10⁻⁶ +3.0 10⁻⁶)
E_total = 1.30 10¹⁰ C / m²