Its readily available
No Harmful emissions
Environment friendly
Renewable
Hydrogen isn't very good fuel source due to its high flammability and can create a nasty mini hydrogen bomb. <span />
Answer:
magnitude of gravitational force between the Earth and the Sun at B is greater than that at A
Explanation:
Formula of gravitational force:
F = GMm/r^2
(r is the distance between 2 objects)
We see that r(B) < r(A) since at B, the Earth is closer to the Sun than at A
According to the Formula, the smaller r is, the greater F is
So, F(B) > F(A)
Answer:3.31m/s², to the right
Explanation:
According to the law of conservation of momentum of a body, change in momentum of bodies before collision is equal to the change in momentum after collision.
Momentum = mass × velocity
M1 and M2 be the masses of the first and second skaters respectively
Let u1 and u2 be the velocities of the first and second skaters respectively.
v be their common velocity after collision
M1 = 77kg M2 = 66kg u1 = 4m/s² u2 = 2.5m/s²
According to the law we have
M1u1 + M2u2 = (M1+M2)v
77(4) + 66(2.5) = (77+66)v
308 + 165 = 143v
V = 473/143
V = 3.31m/s²
Their velocity after collision will become 3.31m/s²
They will both move towards the right after collision because the mass of the body moving to the right is higher than the other mass and the mass is also moving at a higher velocity than the other.
The best thing to do in this case is to redo the experiment and re record the info, it has to be precise and accurate so you also have to check if your procedure is correct. If the results are both accurate and precise then you have to report your findings to the committee of that specific field. <span />
Answer:

Explanation:
Given that:
- moment of inertia of tucked body,

- rotational speed of the body,

- i.e.

- moment of inertia of the straightened body,

<u>Now using the law of conservation of angular momentum:</u>
angular momentum of tucked body=angular momentum of straight body


