Answer:
The answer is D. Kinetic energy is the energy of motion.
Pls mark brainliest. Hope this helped. :D
Answer:
M = 3.0 mol/L.
Explanation:
- We can calculate the molarity of a solution using the relation:
<em>M = (mass x 1000) / (molar mass x V)</em>
- M is the molarity "number of moles of solute per 1.0 L of the solution.
- mass is the mass of the solute (g) (m = 87.75 g of NaCl).
- molar mass of NaCl = 58.44 g/mol.
- V is the volume of the solution (ml) (V = 500.0 ml).
∴ M = (mass x 1000) / (molar mass x V) = (87.75 g x 1000) / (58.44 g/mol x 500.0 ml) = 3.0 mol/L.
Answer:
5 electron groups, see saw
Explanation:
During the formation of SF4, the sulfur atom usually bonds with each of four fluorine atoms where 8 of valence electrons are used. The four fluorine atoms have 3 lone pairs of electrons in its octet which will further utilize 24 valence electrons. In addition, two electrons are present as a lone pair on the sulfur atom. We can determine sulfur’s hybridization state by counting of the number of regions of electron density on sulphur (the central atom in the molecule). When bonding takes place there is a formation of 4 single bonds to sulfur and it has 1 lone pair. Looking at this, we can say that the number of regions of electron density is 5. The hybridization state is sp3d.
SF4 molecular geometry is seesaw with one pair of valence electrons. The molecule is polar. The equatorial fluorine atoms have 102° bond angles instead of the actual 120° angle. The axial fluorine atom angle is 173° instead of the actual 180° bond angle.
Answer:
A. It is the ratio of the concentrations of products to the concentrations of reactants.
Explanation:
The equilibrium constant of a chemical reaction is the ratio of the concentration of products to the concentration of reactants.
This equilibrium constant can be expressed in many different formats.
- For any system, the molar concentration of all the species on the right side are related to the molar concentrations of those on the left side by the equilibrium constant.
- The equilibrium constant is a constant at a given temperature and it is temperature dependent.
- The derivation of the equilibrium constant is based on the law of mass action.
- It states that "the rate of a chemical reaction is proportional to the product of the concentration of the reacting substances. "
HEY mate here your answer
CoBr2 . 6 h2o = Cobalt(II) Bromide Hexahydrate