Answer:
0.94 m³/s
Explanation:
From the question given above, the following data were obtained:
Air flow (in ft³/min) = 2×10³ ft³/min
Air flow (in m³/s) =.?
Next, we shall convert 2×10³ ft³/min to m³/min. This can be obtained as follow:
35.315 ft³/min = 1 m³/min
Therefore,
2×10³ ft³/min = 2×10³ ft³/min × 1 m³/min / 35.315 ft³/min
2×10³ ft³/min = 56.63 m³/min
Finally, we shall convert 56.63 m³/min to m³/s. This can be obtained as follow:
1 m³/min = 1/60 m³/s
Therefore,
56.63 m³/min = 56.63 m³/min × 1/60 m³/s ÷ 1 m³/min
56.63 m³/min = 0.94 m³/s
Thus, 2×10³ ft³/minis equivalent to 0.94 m³/s.
Can u show the whole question plz
The answer to your question is Metal
Answer:
A. The time taken for the car to stop is 3.14 secs
B. The initial velocity is 81.64 ft/s
Explanation:
Data obtained from the question include:
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Final velocity (V) = 0
Time (t) =?
Initial velocity (U) =?
A. Determination of the time taken for the car to stop.
Let us obtain an express for time (t)
Acceleration (a) = Velocity (V)/time(t)
a = V/t
Velocity (V) = distance (s) /time (t)
V = s/t
a = s/t^2
Cross multiply
a x t^2 = s
Divide both side by a
t^2 = s/a
Take the square root of both side
t = √(s/a)
Now we can obtain the time as follow
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Time (t) =..?
t = √(s/a)
t = √(256/26)
t = 3.14 secs
Therefore, the time taken for the car to stop is 3.14 secs
B. Determination of the initial speed of the car.
V = U + at
Final velocity (V) = 0
Deceleration (a) = –26ft/s2
Time (t) = 3.14 sec
Initial velocity (U) =.?
0 = U – 26x3.14
0 = U – 81.64
Collect like terms
U = 81.64 ft/s
Therefore, the initial velocity is 81.64 ft/s
Answer:
The summary of the given statement is explained below throughout the explanation segment.
Explanation:
- Drain certain surfaces throughout warm water of such soap during the very first sink. This same sanitizing of bacteria would not destroy whether grime would be in the direction.
- Exfoliate the plates throughout plain water during the secondary drain. As with grime, the residual soap could avoid the kill off bacteria and viruses by the sanitizer.