Answer:
a. Rate = k×[A]
b. k = 0.213s⁻¹
Explanation:
a. When you are studying the kinetics of a reaction such as:
A + B → Products.
General rate law must be like:
Rate = k×[A]ᵃ[B]ᵇ
You must make experiments change initial concentrations of A and B trying to find k, a and b parameters.
If you see experiments 1 and 3, concentration of A is doubled and the Rate of the reaction is doubled to. That means a = 1
Rate = k×[A]¹[B]ᵇ
In experiment 1 and to the concentration of B change from 1.50M to 2.50M but rate maintains the same. That is only possible if b = 0. (The kinetics of the reaction is indepent to [B]
Rate = k×[A][B]⁰
<h3>Rate = k×[A]</h3>
b. Replacing with values of experiment 1 (You can do the same with experiment 3 obtaining the same) k is:
Rate = k×[A]
0.320M/s = k×[1.50M]
<h3>k = 0.213s⁻¹</h3>
Answer:
Photosynthesis removes carbon from the atmosphere, and cellular respiration releases carbon back into the atmosphere.
Explanation:
The first option clearly expresses the relationship between photosynthesis and cellular respiration.
Cellular respiration releases carbon back into the atmosphere whereas photosynthesis removes the carbon from the atmosphere.
Photosynthesis is the process whereby green plants manufacture their food using carbon dioxide and water.
In cellular respiration, the product of the photosynthesis is used by organisms to produce energy.