Answer is: <span>he boiling point of a 1.5 m aqueous solution of fructose is </span>100.7725°C.
The boiling point
elevation is directly proportional to the molality of the solution
according to the equation: ΔTb = Kb · b.<span>
ΔTb - the boiling point
elevation.
Kb - the ebullioscopic
constant. of water.
b - molality of the solution.
Kb = 0.515</span>°C/m.
b = 1.5 m.
ΔTb = 0.515°C/m · 1.5 m.
ΔTb = 0.7725°C.
Tb(solution) = Tb(water) + ΔTb.
Tb(solution) = 100°C + 0.7725°C = 100.7725°C.
Answer:
<h2>Pressure will increase</h2>
Explanation:
At a constant temperature, the pressure of gas will increase proportional to the decrease in volume of the gas.
P1V1= P2V2
Decrease in volume result in increase in pressure as the equation has to hold true.
Enzymes catalyze the chemical reactions, they act upon the reaction substrates and speed up the reaction. Enzymes have active sites, the places where the reaction substrates interact with the enzyme bringing about the conversion of substrates to products. So, as the enzyme concentration increases the rate of reaction increases till a point where the rate is leveled off. The rate does not further increase, as the substrate might have become limiting at that point. All the available amount of substrate would have been associated with the active sites of the enzymes. So, at that point although there is enough catalyst, lack of substrate would limit the rate of reaction.
it should either be 5 or 10