Answer:
Helium
Explanation:
The first ionization energy varies in a predictable way across the periodic table.
Answer:
About 16.1 grams of oxygen gas.
Explanation:
The reaction between magnesium and oxygen can be described by the equation:

24.4 grams of Mg reacted with O₂ to produce 40.5 grams of MgO. We want to determine the mass of O₂ in the chemical change.
Compute using stoichiometry. From the equation, we know that two moles of MgO is produced from every one mole of O₂. Therefore, we can:
- Convert grams of MgO to moles of MgO.
- Moles of MgO to moles of O₂
- And moles of O₂ to grams of O₂.
The molecular weights of MgO and O₂ are 40.31 g/mol and 32.00 g/mol, respectively.
Dimensional analysis:

In conclusion, about 16.1 grams of oxygen gas was reacted.
You will obtain the same result if you compute with the 24.4 grams of Mg instead:

Answer:
2) Add a solution of NaBr
Explanation:
Lead (II) bromide is an inorganic powdery substance that has a solubility in water of 0.973 g/100 mL at 20°C. It is insoluble in alcohol but is soluble in alkali, ammonia, NaBr, and KBr
PbBr₂ is slightly soluble in ammonia, and it reacts with NaOH to produce Pb(OH)₂ and NaBr
Therefore, the best solution for dissolving PbBr₂(s) is NaBr
Answer: Significant figures in a measurement are all measured digits, and one estimated digit
Significant figures communicate the level of precision in measurements Significant figures are an indicator of the certainty in measurements.
Explanation:
Significant figures : The figures in a number which express the value or the magnitude of a quantity to a specific degree of accuracy or precision is known as significant digits.
The significant figures of a measured quantity are defined as all the digits known with certainty and the first uncertain or estimated digit.
Rules for significant figures:
1. Digits from 1 to 9 are always significant and have infinite number of significant figures.
2. All non-zero numbers are always significant.
3. All zero’s between integers are always significant.
4. All zero’s preceding the first integers are never significant.
5. All zero’s after the decimal point are always significant.
Alll are correct. Matter is literally everywhere