Answer:
the first answer is correct don't forget you can use quizzlet app to
Answer:
This question is incomplete
Explanation:
This question is incomplete as the volume of the base that was used during the titration was not provided. However, the completed question is in the attachment below.
The formula to be used here is CₐVₐ/CbVb = nₐ/nb
where Cₐ is the concentration of the acid = unknown
Vₐ is the volume of the acid used = 25 cm³ (as seen in the question)
Cb is the concentration of the base = 0.105 mol/dm³ (as seen in the question)
Vb is the volume of the base = 22.13 cm³ (22.1 + 22.15 + 22.15/3)
nₐ is the number of moles of acid = 1 (from the chemical equation)
nb is the number of moles of base = 2 (from the chemical equation)
Note that the Vb was based on the concordant results (values within the range of 0.1 cm³ of each other on the table) of the student
Cₐ x 25/0.105 x 22.13 = 1/2
Cₐ x 25 x 2 = 0.105 x 22.13 x 1
Cₐ x 50 = 0.105 x 22.13
Cₐ = 0.105 x 22.13/50
Cₐ = 0.047 mol/dm³
The concentration of the sulfuric acid is 0.047 mol/dm³
Answer:
The acid dissociation constant, _Ka__, is a quantitative measure of acid strength
Explanation:
Answer:
Ca (s) + 2H₂O (l) → Ca(OH)₂ (aq) + H₂ (g)
Explanation:
When solid calcium reacts with water, it produces the correspondent hydroxid and hydrogen gas.
The hydroxid which is produced, is the calcium hydroxid which is a strong base, that's why you talk about a highly alkaline solution.
Ca (s) + 2H₂O (l) → Ca(OH)₂ (aq) + H₂ (g)
Calcium hydroxide is a strong base, that dissociates in water, as this:
Ca(OH)₂ → Ca²⁺ (aq) + 2OH⁻ (aq)
It's a basic solution, is providing hydroxyl ions to the medium