The answer is (2). Heat always flows down the temperature gradient, from high temperature to low temperature. Therefore, since the person is the warmest, heat flows from the person to both the ice and the air. Additionally, since the air is warmer than the ice, heat flows from the air to the ice.
chegg 2. What pattern did you observe measuring cell voltages with a silver electrode versus with a platinum/H2 electrode There is a difference of -0.786 V in silver
<h3>What is cell voltages ?</h3>
The difference in electric potential between two points, also known as voltage, electric potential difference, electric pressure, or electric tension, is what determines how much labor is required to move a test charge between the two sites in a static electric field. Volt is the name of the derived unit for voltage (potential difference) in the International System of Units. Joules per coulomb, or 1 volt equals 1 joule (of work) for 1 coulomb, is how work per unit charge is stated in SI units (of charge). The quantum Hall and Josephson effect was first employed in the 1990s, and most recently (in 2019), fundamental physical constants have been added for the definition of all SI units and derived units. Power and current were used in the previous SI definition for volt.
To learn more about cell voltages from the given link:
brainly.com/question/18938125
#SPJ4
Answer:
The volume is 1.2L
Explanation:
Initial volume (V1) = 700mL = 0.7L
Initial temperature (T1) = 7°C = (7 + 273.15)K = 280.15K
Initial pressure = 106.6kPa = 106600Pa
Final temperature (T2) = 27°C = (27 + 273.15)K = 300.15K
Final pressure (P2) = 66.6kPa = 66600Pa
Final volume (V2) = ?
To solve this question, we need to use combined gas equation which is a combination of Boyle's law, Charles Law and pressure law.
(P1 × V1) / T1 = (P2 × V2) / T2
solve for V2 by making it the subject of formula,
P1 × V1 × T2 = P2 × V2 × T1
V2 = (P1 × V1 × T2) / (P2 × T1)
V2 = (106600 × 0.7 × 300.15) / (66600 × 280.15)
V2 = 22397193 / 18657990
V2 = 1.2L
The final volume of the gas is 1.2L