5.7 kilometers is equal to 3.5418157957528034 miles
Answer:
1793.7m
Explanation:
From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.
Now the kinetic energy; is
K.E = 1/2 × m × v2
Where m is mass
v is velocity
Hence.
K.E = 1/2 × 2.25 × (187.5)^2
Now this should be same with the potential energy which is given as;
P.E = m× g× h
Where m is mass of object
g is acceleration of free fall due to gravity = 9.8m/S2
h is maximum height substain by the object.
Hence P.E = 2.25 × 9.8 × h
From the foregoing analysis of energy conversation it implies;
1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h
=> 1/2 × (187.5)^2 = 9.8 × h
=>1/2 × (187.5)^2 / 9.8 = h
=> 1793.69m = h
h= 1793.69m
h =1793.7m to 1 decimal place
Answer:
The answer is A sorry if i'm wrong
Explanation:
<h3>Hello There!!</h3>
<h3><u>Given</u>,</h3>
Force(F) = 150N
Mass(m) = 90kg
<h3><u>To </u><u>Find,</u></h3>
Acceleration(a) = ?
<h3><u>We know,</u></h3>
F= m×a


<h3>Hope this helps</h3>
Answer:

Explanation:
The velocity v₁ can be calculated with the kinematic formula:

Since the object is initially at rest, v₁ becomes:

Where g is the acceleration due to gravity. Now, the velocity v₂ can be calculated with the same formula, but now the initial velocity is v₁:

Substituting v₁ in this expression and solving for v₂, we get:

Now, dividing v₂ over v₁, we get the expression:

It means that v₂ is √2 times v₁.