Answer:
t=1.623 sec
Explanation:
The distance traveled before the echo is had is:

Given the speed of sound as v=345m/s, we use the speed equation to solve for t:

Hence, it takes 1.623 seconds to hear the echo.
Answer:
7 m .
Explanation:
For destructive interference
Path difference = odd multiple of λ /2
Wave length of sound from each of A and B.
= speed / frequency
λ = 334 / 172 = 2 m
λ/2 = 1 m
If I am 1 m away from B , the path difference will be
8 - 1 = 7 m which is odd multiple of 1 or λ /2
So path difference becomes odd multiple of λ /2.
This is the condition of destructive interference.
So one meter is the closest distance which I can remain at so that i can hear destructive interference.
To solve this problem we will use a free body diagram that allows us to determine the Normal Force.
In general, the normal force would be equivalent to

Since the skier is standing on two skis, his weight will be divide by two

Pressure is given as the force applied in a given area, that is

Replacing F with N'


Our values are given as,




Replacing we have that


Therefore the pressure exerted by each ski on the snow is 776.01Pa
Answer:
The correct answer is Gamma Rays.
Explanation:
D. The number of wave that pass a point in a given amount of time