Answer:
The correct answers are
(a) It decreases to 1/3 L
(ii) is (c) It is constant
Explanation:
to solve this, we list out the number of knowns and unknowns so as to determine the correct equation to solve the problem
The given variables are as follows
Initial volume V1 = 1L
V2 = Unknown
Initial Temperature T1 = 300K
let us assume that the balloon is perfectly elastic
At 300K the balloon is filled and it stretches to maintain 1 atmosphere
at 100K the content of the balloon cools reducing the excitement of the gas content which also reduces the pressure, however, the balloon being perfectly elastic, contracts to maintain the 1 atmospheric pressure, hence the answer to (ii) is (c) It is constant,
For (i) since we know that the pressure of the balloon is constant
by Charles Law V1/T1 =V2/T2
or V2 = (V1/T1)×T2 =× = × L = L/3 hence the correct answer to (i) is 1/3L
<span>the heated filament will react with the oxygen in the air but now with the argon, which is a noble gas and hardly ever reacts.</span>
Oxidation number is the charge.
Among the choices the one that most likely cause a sound wave is C or the a spoon hitting the side of a bowl while mixing <span>because that's going to make a sound.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer:
<em>60008.4 J</em>
<em></em>
Explanation:
The mass of each kid = 30 kg
mass of the cart = 20 kg
The speed of the cart down the hill = 30 km/hr = 30 x 1000/3600 = 8.33 m/s
The height of the hill = 80 m
The potential energy of the boys at the top of the hill = mgh
where
m is the total mass of the kids and the cart = (30 x 2) + 20 = 80 kg
g is the acceleration due to gravity = 9.81 m/s^2
h is their height above the ground = 80 m (on the top of the hill)
substituting, we have
potential energy PE = 80 x 9.81 x 80 = 62784 J
At an instance at the bottom of the hill
their kinetic energy =
where
v is their velocity = 8.33 m/s
m is their total mass = 80 kg
substituting, we have
kinetic energy KE = = 2775.6 J
Total work done on the cart is equal to the energy lost by the cart when it reached the bottom of the hill
work done by friction = PE - KE = 62784 - 2775.6 = <em>60008.4 J</em>