Answer:
Because the disturbances are in opposite directions for this superposition, the resulting amplitude is zero for pure destructive interference
Explanation:
You draw a straight line from the start point to the end point. It doesn't matter what route was actually followed for the trip.
Answer:
Force on the object is 20 N
Explanation:
As we know that work done to raise the book from initial position to final position is known as potential energy stored in it
So here we know that

here we know that
U = 30 J
s = displacement = 1.5 m
so we have


Answer:
The speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.
Explanation:
Let u is the initial speed of the launch. Using first equation of motion as :

a=-g

The velocity of the shell at launch and 5.4 s after the launch is given by :

So, the speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.
<span>2002 seconds, or 33 minutes, 22 seconds.
First, let's calculate how many joules it will take to lift 78 kg against gravity for 1100 meters. So:
78 kg * 9.8 m/s^2 * 1100 m = 840840 kg*m^2/s^2
Now a watt is defined as kg*m^2/s^3, so a division of the required joules should give us a convenient value of seconds. So:
840840 kg*m^2/s^2 / 420 kg*m^2/s^3 = 2002 seconds.
And 2002 seconds is the same as 33 minutes, 22 seconds.</span>