1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
3 years ago
15

A shrinkage limit test is performed on a soil. The initial mass and volume of the soil are: V1=20.2cm^3 , while the final mass a

nd volume are M2=24g and V2=14.3cm^3 . Note that in the initial state the soil is saturated, whereas in the final state the soil is completely dry.
Calculate:
a. the shrinkage limit SL of the soil.
b. the void ratio at the SL.
c. Gs of the soil solids.
d. the initial void ratio.
Engineering
1 answer:
love history [14]3 years ago
3 0
C. Gs of the soil solids
You might be interested in
A hypothetical A-B alloy of composition 57 wt% B-43 wt% A at some temperature is found to consist of mass fractions of 0.5 for b
Dennis_Churaev [7]

Answer:

composition of alpha phase is 27% B

Explanation:

given data

mass fractions  = 0.5 for both

composition = 57 wt% B-43 wt% A

composition = 87 wt% B-13 wt% A

solution

as by total composition Co = 57 and by beta phase composition  Cβ = 87  

we use here lever rule that is

Wα = Wβ   ...............1

Wα = Wβ = 0.5

now we take here left side of equation

we will get

\frac{C_\beta - Co}{C_\beta - Ca}   = 0.5

\frac{87 - 57}{87 - Ca} = 0.5  

solve it we get

Ca = 27

so composition of alpha phase is 27% B

8 0
3 years ago
An automobile weighing 2500 lbf increases its gravitational potential energy by a magnitude of 2.25 × 104 Btu in going from an e
Mila [183]

Answer:

The elevation at the high point of the road is 12186.5 in ft.

Explanation:

The automobile weight is 2500 lbf.

The automobile increases its gravitational potential energy in 2.25 * 10^4 BTU. It means the mobile has increased its elevation.

The initial elevation is of 5183 ft.  

The first step is to convert Btu of potential energy to adequate units to work with data previously presented.

British Thermal Unit - 1 BTU = 778.17  lbf*ft

2.25 * 10^4 BTU (\frac{778.17 lbf*ft}{1BTU} ) = 1.75 * 10^7 lbf * ft

Now we have the gravitational potential energy in lbf*ft. Weight of the mobile is in lbf and the elevation is in ft. We can evaluate the expression for gravitational potential energy as follows:  

Ep = m*g*(h_2 - h_1)\\ W = m*g  

Where m is the mass of the automobile, g is the gravity, W is the weight of the automobile showed in the problem.  

h_2 is the final elevation and h_1 is the initial elevation.

Replacing W in the Ep equation

Ep = W*(h_2 -h_1)\\(h_2 -h_1) = \frac{Ep}{W} \\h_2 = h_1 + \frac{Ep}{W}\\\\

Finally, the next step is to replace the variables of the problem.  

h_2 = 5183 ft + \frac{1.75 * 10^7 lbf*ft}{2500 lbf}\\h_2 = 5183 ft + 70003.5 ft\\h_2 = 12186.5 ft

The elevation at the high point of the road is 12186.5 in ft.  

3 0
3 years ago
State the number of terms for each of the following algebraic expression 2x+1
harina [27]

Answer:

Expressions are made up of terms.

A term is a product of factors.

Coefficient is the numerical factor in the term

Before moving to terms like monomials, binomials, and polynomials, like and unlike terms are discussed.

When terms have the same algebraic factors, they are like terms.

When terms have different algebraic factors, they are unlike terms.

Explanation:

Hi please follow me also if you can and thanks.

6 0
3 years ago
While playing a game of catch on the quadrangle, you throw a ball at an initial velocity of 17.6 m/s (approximately 39.4 mi/hr),
MAXImum [283]

Answer:

a) The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) The ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

Explanation:

a) The ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical motion at constant acceleration. First, we calculate the time taken by the ball to hit the ground:

y = y_{o} + (v_{o}\cdot \sin \theta) \cdot t+\frac{1}{2}\cdot g\cdot t^{2} (1)

Where:

y_{o}, y - Initial and final vertical position, measured in meters.

v_{o} - Initial speed, measured in meters per second.

\theta - Launch angle, measured in sexagesimal degrees.

g - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that y_{o} = 2\,m, y = 0\,m, v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and g = -9.807\,\frac{m}{s^{2}}, then the time taken by the ball is:

-4.904\cdot t^{2}+13.482\cdot t +2 = 0 (2)

This second order polynomial can be solved by Quadratic Formula:

t_{1} \approx 2.890\,s and t_{2} \approx -0.141\,s

Only the first root offers a solution that is physically reasonable. That is, t \approx 2.890\,s.

The vertical velocity of the ball is calculated by this expression:

v_{y} = v_{o}\cdot \sin \theta +g\cdot t (3)

Where:

v_{o,y}, v_{y} - Initial and final vertical velocity, measured in meters per second.

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t \approx 2.890\,s, then the final vertical velocity is:

v_{y} = -14.860\,\frac{m}{s}

The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) From a) we understand that ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball (x) is determined by the following expression:

x = (v_{o}\cdot \cos \theta)\cdot t (4)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and t \approx 2.890\,s, then the distance covered by the ball is:

x = 32.695\,m

The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before hitting the ground (v), measured in meters per second, is determined by the following Pythagorean identity:

v = \sqrt{(v_{o}\cdot \cos \theta )^{2}+v_{y}^{2}} (5)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, then the magnitude of the velocity of the ball is:

v \approx 18.676\,\frac{m}{s}.

The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is defined by the following trigonometric relationship:

\tan \theta = \frac{v_{y}}{v_{o}\cdot \cos \theta_{o}}

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta_{o} = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, the angle of the total velocity of the ball just before hitting the ground is:

\theta \approx -52.717^{\circ}

The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

3 0
3 years ago
Read 2 more answers
The diagram above indicates the location of an enlarged detail to show more information than the blueprint permits. They also ca
mezya [45]

Answer:

c.  Detail designation

Explanation:

the question "enlarged detail to show more information", That has a detail indicator area circle. It's usually more of a square or rectangle not a circle. Circles are good for detailing landscape.

"They also can indicate when a section of the house is being enlarged."  Sections details use that symbol but have a section indicator line. Also grid and column indicators use that symbol.

7 0
3 years ago
Other questions:
  • Briefly describe the purpose of specifying boundary conditions.
    7·1 answer
  • Before accurate distance standards, a cubit was the length of whose forearm?
    5·1 answer
  • A cylinder fitted with a movable piston contains water at 3 MPa with 50% quality, at which point the volume is 20 L. The water n
    8·2 answers
  • ... is an actual sequence of interactions (i.e., an instance) describing one specific situation; a ... is a general sequence of
    9·1 answer
  • Give five examples of
    14·1 answer
  • Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
    10·1 answer
  • What do you think causes the differences in the properties of oxygen gas (O2) and ozone (O3)? the space between the atoms the ra
    9·1 answer
  • 1. If a Gear with a 3 inch Diameter is being turned by a Gear with a 6 inch Diameter, which Gear will rotate at a higher Rate?
    12·1 answer
  • How many different powerball combinations are there
    7·1 answer
  • 1. Band saw lower wheel does not require a guard * true or false 2. Band saw upper guide should be adjusted to within 1/8" of th
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!