Answer:
<em>a = 7.6\ mph/s</em>
Explanation:
<u>Motion With Constant Acceleration
</u>
It's a type of motion in which the velocity of an object changes uniformly in time.
The equation that describes the change of velocities is:

Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
Solving the equation [for a:

The car accelerates from vo=0 to vf=60 mph in t=7.9 s, thus the acceleration is:

a = 7.6\ mph/s
Answer: The horizontal location of the plane will BE OVER THE BOMB
Explanation:
As soon as the bomb was dropped, the bomb will fall under gravity (free fall) and the location of the plane continues to increase horizontally till the bomb reaches the ground which is a falling distance to be travelled by the bomb at 9.8m/s²
What do you mean? I'm confused... You need to put the rest of the question
4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:

Answer:
A. Doubles.
Explanation:
In an electromagnetic device such as a generator, when a wire (conductor) moves through the magnetic field between the South and North poles of a magnet, an electromotive force (e.m.f) is usually induced across a wire
The mode of operation of a generator is that a metal core with copper tightly wound to it (conductor coil) rotates rapidly between the two (2) poles of a horseshoe magnet type. Thus when the conductor coil rotates rapidly, it cuts the magnetic field existing between the poles of the horseshoe magnet and then induces the flow of current.
When a high-resistance voltmeter is connected to an electric circuit, a deflection will arise due to the flow of electricity. Moving the magnet towards the coil of wire will cause the needle of the high-resistance voltmeter to move in one direction. Also, as the magnet is moved out from the coil of wire, the needle of the high-resistance voltmeter moves in the opposite direction.
In this scenario, a magnet is moved in and out of a coil of wire connected to a high-resistance voltmeter. If the number of coils doubles, the induced voltage doubles because the number of turns (voltage) in the primary winding is directly proportional to the number of turns (voltage) in the secondary winding.