1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
3 years ago
14

A 50 kg bicyclist, traveling at a speed of 12 m/s, applies the brakes, slowing her speed to 3 m/s.

Physics
1 answer:
Bezzdna [24]3 years ago
3 0

a) Work done = Net Kinetic Energy

= 1/2 x 50 kg x ((12m/s)^2 - (3m/s)^2)

= 0.5 x 50 Kg x (144 -9)(m/s)^2

= 3375 Kg (m/s)^2

b) Force = mxa

a = 120 N/50 Kg = 2.4 m/s^2

Using newtons third law of motion, we get-

V^2 - U^2 = 2 x a x S

S= (12^2-3^2)m^2/s^2/(2 x 2.4 m/s^2)

= 28.125 m


You might be interested in
A 1300-N crate rests on the floor. How much work is required to move it at constant speed (a)
kherson [118]

a) The work done is 920 J

b) The work done is 5200 J

Explanation:

a)

In this first part of the problem, the crate is moved horizontally at constant speed.

The work required in this case is given by

W=Fd cos \theta

where

F is the magnitude of the force applied

d is the displacement of the crate

\theta is the angle between the direction of the force and of the displacement

Here the crate is moved at constant speed: this means that the acceleration of the crate is zero, and so according to Newton's second law, the net force on the crate is zero: this means that the force applied, F, must be equal to the force of friction (but in opposite direction), so

F = 230 N

The displacement is

d = 4.0 m

And the angle is \theta=0^{\circ}, since the force is applied horizontally. Therefore, the work done is

W=(230)(4.0)(cos 0^{\circ})=920 J

b)

In this case, the crate is moved vertically. The force that must be applied to lift the crate must be equal to the weight of the crate (in order to move it a constant speed), therefore

F = W = 1300 N

The displacement this time is again

d = 4.0 m

And the angle is \theta=0^{\circ}, since the force is applied vertically, and the crate is moved also vertically. Therefore, the work done on the crate this time is

W=(1300)(4.0)(cos 0^{\circ})=5200 J

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

4 0
3 years ago
Ok, so this question is probably really easy but I can't really be bothered to answer it, terrible I know, but I thank all usefu
Dvinal [7]
Without a bulb energy cant go through and it would be an open circuit blocking the energy from coming out.
3 0
3 years ago
Do quasars reside within or without side of galaxies?
sveticcg [70]

They almost entirely reside within galaxies because quasars are a subset of blackholes with a large and fast enough accretion disk to generate a beam of interstellar material perpendicular to itself. This typically only occurs in the largest black holes at the center of galaxies (supermassive blackholes) or at least stellar black holes---which still occur within galaxies because the material is necessary to form them.

6 0
3 years ago
Assume that the driver begins to brake the car when the distance to the wall is d=107m, and take the car's mass as m-1400kg, its
Evgen [1.6K]

Answer:

Explanation:

a ) Let let the frictional force needed be F

Work done by frictional force = kinetic energy of car

F x 107 = 1/2 x 1400 x 35²

F = 8014 N

b )

maximum possible static friction

= μ mg

where μ is coefficient of static friction

= .5 x 1400 x 9.8

= 6860 N

c )

work done by friction for μ = .4

= .4 x 1400 x 9.8 x 107

= 587216 J

Initial Kinetic energy

= .5 x 1400 x 35 x 35

= 857500 J

Kinetic energy at the at of collision

= 857500 - 587216

= 270284 J

So , if v be the velocity at the time of collision

1/2 mv² = 270284

v = 19.65 m /s

d ) centripetal force required

= mv₀² / d which will be provided by frictional force

= (1400 x 35 x 35) / 107

= 16028 N

Maximum frictional force possible

= μmg

= .5 x 1400 x 9.8

= 6860 N

So this is not possible.

4 0
3 years ago
A car manufacturer wants to change its car’s design to increase the car’s acceleration. Which changes should the engineers consi
likoan [24]

Answer:

The car manufacturers could increase bore of the cylinders, place the engine in the center or back of the car, add 1 to 2 turbochargers, and lower the center of gravity of the vehicle to increase traction.

Explanation:

Turbochargers would be recommended because they significantly increase both the torque of the engine as well as the amount of horses powering the car while also increasing original efficiency both with and without the additional power. Weight adjustment allows for lightweight vehicles with good traction. This is important to both keep control of the car under acceleration, but it also makes the vehicle more efficient due to the now sheddable unnecessary weight. A more obvious approach would be to increase the base horsepower and torque of the engine by increasing the bore of the cylinders and the weight of the pistons. This acts as an inertial lever, because the extra piston weight will drag the crankshaft faster. This could also be achieved by taking away piston weight, but this could be catastrophic should a piston slip.

4 0
3 years ago
Other questions:
  • How does the circuit change when the wire is added?
    9·2 answers
  • - As you ride in a car, both you and the car are moving
    14·1 answer
  • In the Bohr model of hydrogen, the electron moves in a circular orbit around the nucleus. (a) Determine the orbital frequency of
    7·1 answer
  • How does the electric potential energy change as the electron moves from i to f?
    12·1 answer
  • What is the lowest temperature that a substance can reach
    14·2 answers
  • 1. a) If a particle's position is given by LaTeX: x\:=\:4-12t\:+\:3t^2x = 4 − 12 t + 3 t 2(where t is in seconds and x is in met
    12·2 answers
  • A(n) 1.3 kg mass sliding on a frictionless surface has a velocity of 7.1 m/s east when it undergoes a one-dimensional elastic co
    14·1 answer
  • The 360-turn primary coil of a step-down transformer is connected to an ac line that is 120 V (rms). The secondary coil is to su
    12·1 answer
  • PLEASE HELP!!
    6·2 answers
  • rolls of foil are 304 mm wide and 0.020 mm thick. (the density of foil is 2.7 g/cm3 .) what maximum length of foil can be made f
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!