12.0g x 1 mol / 63.546g = 0.188839581mol
<span>So, for every 1 mole, we have 6.022 x 10^23 of whatever we're measuring. This gives us a conversion factor of (1 mole / 6.022 x 10^23 atoms) or (6.022 x 10^23 atoms / 1 mole).
</span>
0.188839581 mol x (6.022 x 10^23 atoms) / 1 mol = 1.137191955 x 10^23
<span>Remember from before that we are limited to 3 significant figures. Since our calculations are complete, we can now round down to: 1.14 x 10^23 </span>
<span>That should be your answer!
Hope it helps!
xo</span>
Answer:
A, C and D are correct.
Explanation:
Hello.
In this case, since the relationship between the vapor pressure of a solution is directly proportional to the mole fraction of the solvent and the vapor pressure of the pure solvent as stated by the Raoult's law:

Since the solute is not volatile, the mole fraction of the solute is not taken into account for vapor pressure of the solution, therefore A is correct whereas B is incorrect.
Moreover, since the higher the vapor pressure, the weaker the intermolecular forces due to the fact that less more molecules are like to change from liquid to vapor and therefore more energy is required for such change, we can evidence that both C and D are correct.
Best regards.
Explanation:
magnesium Hydroxide + Hydrochloric react together and give us magnesium chloride + water
Carbon has a higher boiling point.