Identical electron configurations : K⁺ and Cl⁻
<h3>Further explanation </h3>
In an atom, there are levels of energy in the shell and sub-shell
This energy level is expressed in the form of electron configurations.
Charging electrons in the sub-shell uses the following sequence:
<em>1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁶, 5s², 4d¹⁰, 5p⁶, 6s², etc. </em>
S²⁻ : [Ne] 3s²3p⁶
Cl : [Ne] 3s²3p⁵
K⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
S :[Ne] 3s²3p⁴
Ar : [Ne] 3s²3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
K : 1s² 2s² 2p⁶ 3s² 3p⁶4s¹
Markovnikov rule, in organic chemistry, a generalization, formulated by Vladimir Vasilyevich Markovnikov in 1869, stating that in addition reactions to unsymmetrical alkenes, the electron-rich component of the reagent adds to the carbon atom with fewer hydrogen atoms bonded to it, while the electron-deficient component ...
Dichlorine monoxide has the same structure like that of water. So, this is a polar molecule. For polar molecules, the dominant intermolecular force would be dipole-dipole forces. For HBr, there is a force between two oppositely charged ions, H⁺ and Br⁻. So, the dominant intermolecular force is electrostatic attraction.
Answer:
The corect answer would be C.
Explanation:
The flow rate set at a differentt time would be the correct measurement beecause wats and speed add up to your main answer.
When hydrogen peroxide is broken down the gas released or given off is Oxygen.