1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexira [117]
3 years ago
15

The bigger an object is the smaller the force of gravity. True or False

Physics
1 answer:
castortr0y [4]3 years ago
7 0

Answer:

False

Explanation:

The force of gravity depends on the mass of an object as its directly proportional to mass. This is according to Newtons law of gravitation which states that the force of gravitation between two objects is directly proportional to the masses of the object and inversely proportional to their distance apart. An increase in an object mass will lead to an increase in the force of gravity.

You might be interested in
I need it in the next hour or so!
PSYCHO15rus [73]

The car is accelerating at 3 m/s² in the positive direction (to the right). By Newton's second law, the net force on the car in this direction is

∑ F = F[a] - F[f] - F[air] = ma

3100 N - 200 N - F[air] = (650 kg) (3 m/s²)

Solve for F[air] :

F[air] = 3100 N - 200 N - (650 kg) (3 m/s²)

F[air] = 3100 N - 200 N - 1950 N

F[air] = 950 N

3 0
2 years ago
A ball of mass M is suspended by a thin string (of negligible mass) from the ceiling of an elevator.uploaded image
lilavasa [31]

Answer:

(a) The elevator is traveling upward and its upward velocity is decreasing as it nears a stop at a higher floor.  T > mg

(b) The elevator is traveling upward and its upward velocity is increasing as it begins its journey towards a higher floor. T > mg

(c) The elevator is traveling downward and its downward velocity is decreasing as it nears a stop at a lower floor. T < mg

(d) The elevator is traveling downward at a constant velocity. T = mg

(e) The elevator is traveling downward and its downward velocity is increasing. T < mg

(f) The elevator is stationary and remains at rest. T = mg

Explanation:

To answer this question, consider all the forces acting on the elevator.

The mass of the ball acting downwards due to gravity = mg

The tension on the string depends on upward or downwards force on the ball. T = m(a+g)

where a is acceleration and increase in velocity causes increase in acceleration, and vice versa. (a = v/t)

(a) The elevator is traveling upward and its upward velocity is decreasing as it nears a stop at a higher floor.

If the upward velocity is decreasing, its acceleration is also decreasing, and acceleration is not equal to Zero

T = m(a+g) > mg

(b) The elevator is traveling upward and its upward velocity is increasing as it begins its journey towards a higher floor.

If the upward velocity is increasing, its acceleration is also increasing.

Then, T = m(a+g) > mg

(c) The elevator is traveling downward and its downward velocity is decreasing as it nears a stop at a lower floor.

If the downward velocity is decreasing, its acceleration is also decreasing, and acceleration is not equal to Zero

T = m(a-g) < mg

(d) The elevator is traveling downward at a constant velocity

At constant velocity, acceleration is zero, because acceleration is the rate of change of velocity.

T = m(0+g) = mg

(e) The elevator is traveling downward and its downward velocity is increasing

If the downward velocity is increasing, its acceleration is also increasing

T = m(a-g) < mg

(f) The elevator is stationary and remains at rest.

if the elevator is at rest, its acceleration is zero

T = m(0+g) = mg

6 0
3 years ago
The gold has a density of 19300 kg/m3 calculate the mass of one gold bar 1= 2.54cm
icang [17]
Fair enough, but you'll have to tell us the volume of the bar first.
5 0
3 years ago
In an electric field, 0.90 joule of work is required to bring 0.45 coulomb of charge from point a to point
jarptica [38.1K]
The difference in electric potential energy between the two points is
\Delta U = q \Delta V
where q is the magnitude of the charge and \Delta V is the electric potential difference.

But for energy conservation, the difference in electric potential energy \Delta U between the two points is equal to the work done to move the charge between A and B:
W=\Delta U
so we have
W=q \Delta V

and by substituting the numbers of the problem, we find the value of \Delta V:
\Delta V =  \frac{W}{q}= \frac{0.90 J}{0.45 C}=2 V
3 0
3 years ago
Which of the following is NOT a potential result of climate change?
stepladder [879]

Answer:

My answer :

Explanation:

sea-level change

4 0
3 years ago
Other questions:
  • A box is lowered using a rope. If the acceleration of the box, is 2.5 m/s2 (downward) and the tension in the rope is 31 N, what
    5·1 answer
  • A heater gives off heat at a rate of 330 kj/min. what is the rate of heat output in kilocalories per hour? (1 cal 4.184 j)
    10·1 answer
  • If the value of the electric field in an electromagnetic wave were doubled then
    6·1 answer
  • Which sampling method subdivides the population into categories sharing similar characteristics and then selects a sample from e
    11·1 answer
  • What are becquerel rays????
    6·2 answers
  • A note on a piano vibrates 262 time per second. What is the period of the wave
    13·1 answer
  • -2 m
    9·1 answer
  • A bullet of mass M1 is fired towards a block of mass m2 initially at rest at the edge of a frictionless table of height h as in
    7·1 answer
  • what can you say about the motion of an object if its speed time graph is a straight line parallel to the time axis ? Also draw
    13·1 answer
  • A dentist's chair with a person in it weighs 1675 N. The output plunger of a hydraulic system starts to lift the chair when the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!