Answer:
179.47m/s
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the final velocity
Substitute
7750(179)+72(230) = (7750+72)v
1,387,250+16560 = 7822v
1,403,810 = 7822v
v = 1,403,810/7822
v= 179.47m/s
Hence the final velocity of the probe is 179.47m/s
Answer:
In a chemical reaction the total mass of all the substances taking part in the reaction remains the same. Also, the number of atoms in a reaction remains the same. Mass cannot be created or destroyed in a chemical reaction.
Explanation:
Answer:
Explanation:
When a body is held against a vertical wall , to keep them in balanced position , normal force is applied on their surface . this force creates normal reaction which acts against the normal force and it is equal to the normal force as per newton's third law . Ultimately friction force is created which is proportional to normal force and it acts in vertically upward direction . It prevents the body from falling down .
Hence normal force = reaction force .
From second law also net force is zero , so if normal force is N and reaction force is R
R - N = mass x acceleration = mass x 0 = 0
R = N .
Ranking normal force from highest to smallest
150 N , 130 N , 120 N
B )
Frictional force is equal to the weight of the body because the body is held at rest .
Ranking of frictional force form largest to smallest
7 kg , 5 kg , 3 kg , 1 kg .
Here frictional force is irrespective of the normal force acting on the body because frictional force adjusts itself so that it becomes equal to weight in all cases here because it always balances the weight of the body .
1.A and 2.B there the answers
In a direct current, the electric charge, or current, only flows in one direction. In an alternating current, the electric charge changes periodically.