<span>step 1: energy required to heat coffee
E = m Cp dT
E = energy to heat coffee
m = mass coffee = 225 mL x (0.997 g / mL) = 224g
Cp = heat capacity of coffee = 4.184 J / gK
dT = change in temp of coffee = 62.0 - 25.0 C = 37.0 C
E = (224 g) x (4.184 J / gK) x (37.0 C) = 3.46x10^4 J
step2: find energy of a single photon of the radiation
E = hc / λ
E = energy of the photon
h = planck's constant = 6.626x10^-34 J s
c = speed of light = 3.00x10^8 m/s
λ = wavelength = 11.2 cm = 11.2 cm x (1m / 100 cm) = 0.112 m
E = (6.626x10^-34 J s) x (3.00x10^8 m/s) / (0.112 m) = 1.77x10^-16 J
step3: Number of photons
3.46x10^4 J x ( 1 photon / 1.77x10^-16 J) = 1.95x10^20 photons</span>
True, I just learned this a week ago. Is this for Chemistry?
According to Newton's first law of motion, it is the natural tendency of all moving objects to continue in motion in the same direction that they are moving ... unless some form of unbalanced force acts upon the object to deviate its motion from its straight-line path.
Hope this helped, have a great day!
Answer:
final velocity will be44.72m/s
Explanation:
HEIGHT=h=100m
vi=0m/s
vf=?
g=10m/s²
by using third equation of motion for bodies under gravity
2gh=(vf)²-(vi)²
evaluating the formula
2(10m/s²)(100m)=vf²-(0m/s)²
2000m²/s²=vf²
√2000m²/s²=√vf²
44.72m/s=vf