Her discovery of radium and polonium.
She was the first woman to win a nobel prize and a second one as well!
Marie Curie was the first women to be appointed as the director of the physics lab at Sorbonne.
She was also the first woman to become a professor at the University of Paris.
She helped make radiology units which were again portable and those assisted the field surgeons during the war.
Hope this helps :))
<span>In the question ' which of the following most likely require intermolecular force', options A and C given are definitely not the correct answers. Among the items listed in the questions, the one that will most likely required an intermolecular force is a rock maintaing its solid shape. Thus, the correct option is B. Intermolecular forces are forces which maintain chemical interactions between molecules of a particular susbstance and other types of paticles that may be present in the substance. Rocks are made up of differet particles and their structures are held together by different types of intermolecular forces depending on the types of particles present in the rock. Intermolecular forces can only occur among molecules and other particles in a compound that is why the other two options are wrong. Intermolecular force can either be attractive or repulsive. Attraction occurs between molecules of opposite charges, that is, positive and negative charges while repulsion occurs between particles of like charges, for intstance, between positive and positive charges. The Intermolecular forces that exist in a compound maintaings the integrity of the structure of that compound. Intermolecular forces in compounds exist in different forms, we have electrovalent bonds, covalent bonds, hydrogen bond, vander waals forces, etc. The type of molecules that exist in a compound will determine the type of intermolecular forces that will exist among the molecules of that substance. Electrovalent bonds are the strongest type of intermolecular force and it normally exist between metals and non metals. Covalent bonds involved sharing of electrons among the participating elements while vander waals forces are the weakest form of intermolecular forces. Forces are often required to break intermolecular forces apart. Breaking the intermolecular forces apart will destroy the structure of the substance inlvolved.</span>
When water at 50 C is added to ice at -12 C, heat is transferred from hot water to ice.
- Heat given out by water = Heat absorbed by ice
Calculating the heat released by hot water:
ΔT

Calculating heat absorbed by 16 g of ice: Ice at
is converted to ice at
and then ice at
to water at 
ΔT + 
+ 
q = 405.12 J +5336.8 J =5741.92 J
- Heat given out by water = Heat absorbed by ice
-(
m = 27.4 g
Therefore, 27.4 g water at
must be added to 16 g of ice at
to convert to liquid water at 
Answer:
mass of CO = 210.42 g
mass in three significant figures = 210. g
Explanation:
Given data:
mass of Fe2O3 = 0.400 Kg
mass of CO= ?
Solution:
chemical equation:
Fe2O3 + 3CO → 2Fe + 3CO2
Now we will calculate the molar mass of Fe2O3 and CO.
Molar mass of Fe2O3 = (55.845 × 2) + (16 × 3) = 159.69 g/mol
Molar mass of CO = 12+ 16 = 28 g/mol
now we will convert the kg of Fe2O3 in g.
mass of Fe2O3 = 0.400 kg × 1000 = 400 g
number of moles of Fe2O3 = 400 g/ 159.69 g/mol = 2.505 mol
mass of CO = moles of Fe2O3 × 3( molar mass of CO)
mass of CO = 2.505 mol × 84 g/mol
mass of CO = 210.42 g
mass in three significant figures = 210. g
Answer:
Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances. These processes are called chemical reactions and, in general, are not reversible except by further chemical reactions.
Explanation: